SIMPLE KNOTS WHICH ARE DOUBLY-NULL-COBORDANT

C. KEARTON

ABSTRACT. Using the Seifert matrix, a necessary and sufficient condition is given for a simple $(2q - 1)$-knot, $q > 1$, to be doubly-null-cobordant.

An n-knot is a smooth oriented submanifold K of the $(n + 2)$-sphere S^{n+2}, where K is homeomorphic to S^n. An n-knot is doubly-null-cobordant if it is a cross-section of an unknotted pair (S^{n+3}, S^{n+1}). D. W. Sumners [3] has studied the case $n = 2q - 1$, and has given a necessary condition for K to be doubly-null-cobordant. He has also given a partial converse, which is the purpose of this paper to strengthen.

Let K be a $(2q - 1)$-knot; K bounds a smooth oriented submanifold U of S^{2q+1}, and choosing a basis for the torsion-free part of $H_q(U)$, we obtain a matrix A of linking numbers called a Seifert matrix of K. The submanifold U is not unique, but any two such submanifolds are cobordant, and this induces an equivalence relation on the Seifert matrices of K which may be described as follows. An elementary enlargement of A is an integer matrix of the form

$\begin{pmatrix}
A & 0 & 0 \\
\alpha & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}$

or

$\begin{pmatrix}
A & \beta & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$

where α is a row vector, β a column vector. We say $A \sim B$ if A is an elementary enlargement of B or vice versa, or if there is a unimodular congruence between A and B. Two Seifert matrices A, B are equivalent if they are connected by a sequence $A = A_1, \ldots, A_k = B$ such that $A_i \sim A_{i+1}$ for $1 \leq i < k$.

An elementary enlargement is trivial if $\alpha = 0$ or $\beta = 0$, and a succession of trivial elementary enlargements is a trivial enlargement.

The Seifert matrix A is doubly-null-cobordant if it is congruent to one of the form $\begin{pmatrix}0 & 0 & 0 \\
\ast & \ast & \ast \\
0 & 0 & 0\end{pmatrix}$, all the blocks being square.

Levine [2] defines a simple $(2q - 1)$-knot as one whose complement has the homotopy $(q - 1)$-type of a circle. If K is a $(2q - 1)$-knot which bounds a $(q - 1)$-connected submanifold U, then the associated matrix A is said to be special; we remark that this can occur precisely when K is simple.

Received by the editors July 12, 1974.

Key words and phrases. Simple knot, doubly-null-cobordant, Seifert matrix.
Lemma. Let A be a Seifert matrix of a simple $(2q - 1)$-knot K. If $q > 2$, then A is special; if $q = 2$, then some trivial enlargement of A is special.

Proof. Let U be a submanifold with which A is associated. By results of [1], U is cobordant to a $(q - 1)$-connected submanifold V, and so there exists a sequence $A = A_1, \ldots, A_k = B$ where $A_i \sim A_{i+1}$ for $1 \leq i < k$, and B is a Seifert matrix associated with V. If $q > 2$, it is shown in [2, §§11–13] that if $C \sim D$ and D is a special Seifert matrix, then so is C. But B is special, hence so is A. If $q = 2$, the arguments in [2, §§10–13] apply provided we replace the sequence A_1, \ldots, A_k by A'_1, \ldots, A'_k, each A'_i being a trivial enlargement of A_i with order $\text{order } A'_i - \text{order } A_i$ independent of i. □

Theorem. If K is a simple $(2q - 1)$-knot, $q > 2$, then K is doubly-null-cobordant if and only if it possesses a doubly-null-cobordant Seifert matrix.

Proof. If K is doubly-null-cobordant, then Sumners proves in [3] that it has a doubly-null-cobordant matrix. Assume conversely that A is such a matrix; then any trivial enlargement of A is also doubly-null-cobordant, and so by the Lemma we may take A to be special. Another result of Sumners [3, Theorem 3.1] shows that K is doubly-null-cobordant. □

REFERENCES

CORPUS CHRISTI COLLEGE, CAMBRIDGE UNIVERSITY, CAMBRIDGE, GREAT BRITAIN