Linearization of homeomorphism groups
HTML articles powered by AMS MathViewer
- by Su Shing Chen
- Proc. Amer. Math. Soc. 52 (1975), 447-450
- DOI: https://doi.org/10.1090/S0002-9939-1975-0380842-7
- PDF | Request permission
Abstract:
A theorem of Beboutov and Kakutani is extended to a large class of homeomorphism groups.References
- Su Shing Chen and Richard W. Yoh, The category of generalized Lie groups, Trans. Amer. Math. Soc. 199 (1974), 281–294. MR 352334, DOI 10.1090/S0002-9947-1974-0352334-6
- Andrew M. Gleason and Richard S. Palais, On a class of transformation groups, Amer. J. Math. 79 (1957), 631–648. MR 89367, DOI 10.2307/2372567 K. Hofmann, Introduction to the theory of compact groups, Tulane University Lecture Notes, 1968.
- Shizuo Kakutani, A proof of Beboutov’s theorem, J. Differential Equations 4 (1968), 194–201. MR 226144, DOI 10.1016/0022-0396(68)90036-3
- Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
- G. D. Mostow, Equivariant embeddings in Euclidean space, Ann. of Math. (2) 65 (1957), 432–446. MR 87037, DOI 10.2307/1970055
- G. D. Mostow, On a conjecture of Montgomery, Ann. of Math. (2) 65 (1957), 513–516. MR 87039, DOI 10.2307/1970061
- Su Shing Chen, An extension of the Kakutani-Beboutov system, J. Differential Equations 18 (1975), no. 2, 275–276. MR 372835, DOI 10.1016/0022-0396(75)90062-5
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 447-450
- MSC: Primary 57E05
- DOI: https://doi.org/10.1090/S0002-9939-1975-0380842-7
- MathSciNet review: 0380842