UNIMAXIMAL ORDERS

T. V. FOSSUM

ABSTRACT. Let R be a Dedekind domain with quotient field K, and let A be a separable K-algebra. An R-order Λ in A is said to be unimaximal if Λ is contained in a unique maximal R-order in A. Unimaximal orders are given characterizations which are applied to determine those finite groups G of order n for which RG is unimaximal, where K is an algebraic number field containing a primitive nth root of unity.

1. Introduction. We assume throughout this paper that R is a Dedekind domain with quotient field K, and that A is a separable K-algebra. An R-order Λ in A is an R-subalgebra of A which is finitely generated as an R-module and which contains a K-basis for A. We will follow the notation and terminology of [5] concerning orders and lattices.

Definition. An R-order Λ in A is said to be unimaximal if Λ is contained in a unique maximal R-order in A.

The principal tools in this paper are the characterizations of hereditary orders given by Brumer [1], Harada [2] and Jacobinski [3]. Hereditary orders correspond locally to certain subrings of rings of the type $\text{End}_D(M_D)$, where D is a division ring and M_D is a finite dimensional right D-module; more importantly, a nonmaximal hereditary order corresponds at some prime to a subring which acts reducibly on some M.

Definition. Let C be a unital subring of a ring B. We say C is an irreducible subring of B if for all simple left B-modules M, M has no proper (C, D)-bisubmodules, where $D = \text{End}_B(M)$ acts on the right of M.

The Jacobson radical of a ring B is denoted $J(B)$. From the definition we deduce the following

Proposition. Let C be an irreducible subring of B. If $(C + J(B))/J(B)$ is artinian, then $J(B) \supseteq J(C)$.

Proof. Set $J = J(B)$ and $\bar{C} = (C + J)/J$. If M is a simple left B-module, then M is a nonzero left \bar{C}-module. Since \bar{C} is artinian, M contains a simple left \bar{C}-submodule, say N. Setting $D = \text{End}_B(M)$, we find that ND is a nonzero (C, D)-bisubmodule of M, and so by assumption $ND = M$. It follows that the annihilator of M in B contains the annihilator of N in C, and therefore $J(B) \supseteq J(C)$.
2. Characterizations. Let $\text{spec}(R)$ denote the set of prime ideals of R. If $P \in \text{spec}(R)$ and if X is a finitely generated R-module, we let \hat{X}_p (or \hat{X} if there is no ambiguity) denote the P-adic completion of X.

Theorem A. Let Λ be an R-order in Λ, and let Γ be a fixed maximal order containing Λ. Then the following statements are equivalent:

(a) Λ is unimaximal.

(b) If H is a hereditary R-order in Λ such that $\Lambda \subseteq H$, then H is maximal.

(c) If H is a hereditary R-order in Λ such that $\Lambda \subseteq H \subseteq \Gamma$, then $H = \Gamma$.

(d) $\hat{\Lambda}_p$ is an irreducible subring of $\hat{\Gamma}_p$ for all $P \in \text{spec}(R)$.

(e) If Λ' is an R-order such that $\Lambda \subseteq \Lambda' \subseteq \Gamma$, then $\hat{\Lambda}'_p \supseteq \hat{\Gamma}_p$ for all $P \in \text{spec}(R)$.

Proof. The proof will follow this scheme:

$$
\begin{align*}
& a \implies b: \text{Assume (a), and let } H \text{ be a hereditary } R\text{-order in } \Lambda \text{ such that } \Lambda \subseteq H. \text{ By [3, Proposition 3], } H \text{ is the intersection of maximal orders. Since } \Lambda \text{ is unimaximal, } H \text{ must be maximal, as desired.}
\end{align*}
$$

$$
\begin{align*}
& b \implies c: \text{This is obvious.}
\end{align*}
$$

$$
\begin{align*}
& c \implies d: \text{Assume (d) is false, and fix some } P \in \text{spec}(R) \text{ such that } \hat{\Lambda} \text{ is not irreducible in } \hat{\Gamma}. \text{ Let } K \text{ be the quotient field of } R, \text{ and set } \hat{\Lambda} = A \otimes_K \hat{K}, \text{ so that } \hat{\Lambda} \text{ and } \hat{\Gamma} \text{ are } \hat{R}\text{-orders in } \hat{\Lambda}. \text{ It is no loss to assume that } \hat{\Lambda} \text{ is simple. Since } \hat{\Gamma} \text{ is a maximal } \hat{R}\text{-order in the simple algebra } \hat{\Lambda} \text{ and } \hat{\Gamma} \text{ is complete, } \hat{\Gamma} \text{ has a unique simple module } M. \text{ By hypothesis, } M \text{ contains a proper } (\hat{\Lambda}, D)\text{-submodule, say } N, \text{ where } D \text{ is the endomorphism ring of } M \text{ over } \hat{\Gamma}. \text{ By [3, Proposition 2], } \hat{H} = \{x \in \hat{\Gamma}: xN \subseteq N\} \text{ is a nonmaximal hereditary order in } \hat{\Gamma}, \text{ and clearly } \Lambda \subseteq \hat{H}. \text{ It is now easy to construct a nonmaximal hereditary order } H \text{ such that } \Lambda \subseteq H \subseteq \Gamma. \text{ Thus (c) is false, as desired.}
\end{align*}
$$

$$
\begin{align*}
& d \implies a: \text{Let (d) hold. It is enough to assume that } \Lambda \text{ is simple and } R \text{ is complete. It follows that } J = J(\Gamma) \text{ is the unique maximal two-sided ideal of } \Gamma. \text{ Let } \Gamma' \text{ be a maximal order containing } \Lambda, \text{ and set } \Lambda' = \Lambda \cap \Gamma'. \text{ Clearly } \Lambda' \supseteq \Lambda. \text{ Since } R \text{ is complete, (d) implies that } \Lambda, \text{ and hence } \Lambda', \text{ is irreducible as a subring of } \Gamma, \text{ so it follows that } (\Lambda' + J)/J \text{ is simple. Since } J \text{ is an invertible } \Gamma\text{-ideal, there exists an integer } n \text{ such that } J^n \Gamma' \subseteq \Gamma \text{ but } J^n \Gamma' \not\subseteq J, \text{ and we set } I = J^n \Gamma'. \text{ Notice that } I \text{ is a left ideal of } \Gamma. \text{ Since } \Gamma' \text{ is a maximal order, the right order } O(I) \text{ of } I \text{ is } \Gamma'. \text{ But then } \Gamma \cap O(I) = \Gamma \cap \Gamma' = \Lambda', \text{ and therefore } I \text{ is a two-sided ideal in } \Lambda'. \text{ It follows that } (I + J)/J \text{ is a two-sided ideal in } (\Lambda' + J)/J, \text{ and since the latter is a simple ring, either } I + J = J \text{ or } I + J = \Lambda' + J. \text{ The first possibility is ruled out.}
\end{align*}
$$
since \(I \subseteq J \), and hence
\[
(*) \quad I + J = \Lambda' + J.
\]
Now \(I \) is a left ideal of \(\Lambda' + J \), and \(J \) is contained in the radical of \(\Lambda' + J \), so Nakayama’s lemma applied to \((*) \) shows that \(I = \Lambda' + J \). In particular, \(1 \in I \). Inasmuch as \(I \) is a left ideal of \(\Gamma \), we find that \(I = \Gamma \), whence \(\Gamma = O_*(I) = \Gamma' \), showing that \((d) \) implies \((a) \).

\(d \Rightarrow e \): This follows directly from the Proposition in §1.

\(e \Rightarrow c \): Let \((e) \) hold, and assume \(H \) is a hereditary \(R \)-order such that \(\Lambda \subseteq H \subseteq \Gamma \). By assumption, \(J(\hat{H}_P) \subseteq J(\hat{\Gamma}_P) \) for all \(P \in \text{spec}(R) \). Jacobinski’s characterization [3, Theorem 1] of hereditary orders implies that \(H = \Gamma \), as desired.

This concludes the proof of the theorem.

It is interesting to single out the following special case:

Corollary. Let \(\Gamma \) and \(\Gamma' \) be distinct maximal \(R \)-orders in \(\Lambda \). Then \(\Gamma \cap \Gamma' \) is contained in a nonmaximal hereditary order.

Example. Let \(K \) be the field of rational numbers, and let \(Z_{(2)} \) be the localization of the ring \(Z \) of integers at the prime 2. The polynomial \(x^2 + x + 1 \) is irreducible over the residue class field \(Z/2Z \) of \(\hat{Z}_{(2)} \), and therefore if \(\Lambda \) is any \(Z_{(2)} \)-order in \(K_2 \) (the ring of two-by-two matrices over \(K \)) which contains the companion matrix \(\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \) of \(x^2 + x + 1 \), then \(\Lambda \) is unimaximal.

3. **Group algebras.** We use a theorem in modular character theory together with the result of the previous section to characterize those group algebras (with suitable restrictions on the ground ring) which are unimaximal.

A finite group \(G \) is said to be \(p \)-nilpotent (\(p \) a rational prime) if \(G \) contains a normal subgroup \(N \) of order relatively prime to \(p \) such that \(G/N \) is a \(p \)-group.

Theorem B. Let \(G \) be a finite group of order \(n \), let \(K \) be an algebraic number field containing a primitive \(n \)th root of unity, and let \(R \) be a Dedekind domain with quotient field \(K \). Then \(RG \) is unimaximal in \(KG \) if and only if

1. \(G \) is \(p \)-nilpotent, and
2. the Sylow \(p \)-subgroups of \(G \) are abelian for all rational primes \(p \) which are nonunits in \(R \).

Proof. Let \(\Gamma \) be a maximal \(R \)-order in \(KG \) which contains \(\Lambda = RG \), and fix \(P \in \text{spec}(R) \). Let \(p \) be the rational prime in \(P \). Since \(K \) is a splitting field for \(KG \), it follows that \(J(\hat{\Gamma}) = \hat{P}\hat{\Gamma} \). Now let \(M \) be an irreducible (in the sense of lattices) left \(\hat{\Gamma} \)-lattice, so that \(M \) is also an irreducible left \(\hat{\Lambda} \)-lattice (see [5, Chapter IV, Lemma 1.13]). One easily checks that \(M/\hat{P}M \) is a simple left \(\hat{\Lambda} \)-module, and every simple left \(\hat{\Lambda} \)-module can be obtained in this way. Clearly \(\text{End}_{\hat{\Lambda}}(M/\hat{P}M) = \hat{R}/\hat{P} \), so any \((\hat{\Lambda}, \hat{R}/\hat{P}) \)-bisuremodule of \(M/\hat{P}M \) is
simply a left \mathcal{A}-submodule. From Theorem A, we see that \mathcal{A} is unimaximal if and only if each such $M/\mathcal{P}M$ is a simple \mathcal{A}-module. Noting that $\mathcal{A}/\mathcal{P}\mathcal{A} = F\mathcal{G}$, where $F = \hat{R}/\mathcal{P}$, we can apply a theorem of Richen [4] which says that $M/\mathcal{P}M$ is a simple \mathcal{A}-module for all such M if and only if G is p-nilpotent and the Sylow p-subgroups are abelian. This concludes the proof.

Corollary. Let G be a finite group of order n, let K be an algebraic number field containing a primitive nth root of unity, and let R be the ring of algebraic integers in K. Then RG is unimaximal in KG if and only if G is abelian.

Proof. Note first that every rational prime p is a nonunit in R. From Theorem B we see that RG is unimaximal in KG if and only if G is p-nilpotent with abelian Sylow p-subgroups for all primes p. One can readily show that this is equivalent to G being abelian.

Example. Let $G = S_3$, the (nonabelian) symmetric group on 3 letters, of order 6. Let K be the field of rational numbers, and let $R = \mathbb{Z}$. Since G is not 3-nilpotent and 3 is not a unit in R, RG is not unimaximal. We give an explicit proper hereditary order containing RG. Write $KG = K \oplus K \oplus K_2$, a direct sum of full matrix algebras over K. Now G is generated by the two 2-cycles (12) and (13). The correspondence

\[(12) \rightarrow \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \quad (13) \rightarrow \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}\]

defines an embedding of RG into KG. Now the elements of KG of the form \((a, b, c, d, e, f)\), where $a, b, c, d, e, f \in R$, is a proper hereditary order in KG which clearly contains RG. From this the reader may determine two distinct maximal R-orders in KG which contain RG.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112

DIVISION OF SCIENCE, UNIVERSITY OF WISCONSIN-PARKSIDE, KENOSHA, WISCONSIN 53140