Unimaximal orders
HTML articles powered by AMS MathViewer
- by T. V. Fossum
- Proc. Amer. Math. Soc. 52 (1975), 99-102
- DOI: https://doi.org/10.1090/S0002-9939-1975-0382326-9
- PDF | Request permission
Abstract:
Let $R$ be a Dedekind domain with quotient field $K$, and let $A$ be a separable $K$-algebra. An $R$-order $\Lambda$ in $A$ is said to be unimaximal if $\Lambda$ is contained in a unique maximal $R$-order in $A$. Unimaximal orders are given characterizations which are applied to determine those finite groups $G$ of order $n$ for which $RG$ is unimaximal, where $K$ is an algebraic number field containing a primitive $n$th root of unity.References
- Armand Brumer, Structure of hereditary orders, Bull. Amer. Math. Soc. 69 (1963), 721–724. MR 152565, DOI 10.1090/S0002-9904-1963-11002-2
- Manabu Harada, Hereditary orders, Trans. Amer. Math. Soc. 107 (1963), 273–290. MR 151489, DOI 10.1090/S0002-9947-1963-0151489-9
- H. Jacobinski, Two remarks about hereditary orders, Proc. Amer. Math. Soc. 28 (1971), 1–8. MR 272807, DOI 10.1090/S0002-9939-1971-0272807-7
- Forrest Richen, Decomposition numbers of $p$-solvable groups, Proc. Amer. Math. Soc. 25 (1970), 100–104. MR 254146, DOI 10.1090/S0002-9939-1970-0254146-2
- Klaus W. Roggenkamp and Verena Huber-Dyson, Lattices over orders. I, Lecture Notes in Mathematics, Vol. 115, Springer-Verlag, Berlin-New York, 1970. MR 0283013
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 99-102
- MSC: Primary 16A18
- DOI: https://doi.org/10.1090/S0002-9939-1975-0382326-9
- MathSciNet review: 0382326