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ON THE EXISTENCE OF SATURATED MODELS

OF STABLE THEORIES

VICTOR HARNIK

ABSTRACT.  It is proven that a theory   T  stable in a power X,

A >  7" , has a saturated model of cardinality X.

The purpose of this note is to show that a theory stable in the power A,

A > \T\, has a saturated model of cardinality A.  This statement has been

well known and easily seen for regular A (even for A = \T\). We shall, there-

fore, consider the case of a singular A > \T\. Our result was stated in [l]

where we gave a proof for the particular case of totally transcendental theories.

Our method of proof was inspired by Shelah's Theorem 4.3 in [8], It

should be mentioned that Shelah extended our result to the case of a singular

A = \T\ (a proof will appear in [9]).

A proof of a somewhat weaker version of our result is presented in [0]

and uses a notion of rank for types.

Before proceeding to the proof itself, we review, in §1, the main results

about stable theories.

0. Notations and terminology.  Our notations will be standard. L will

be a first order finitary language and T a complete L-theory. We denote

structures by 21, 8, ?In, etc. and their respective universes by A, B, A., etc.

We follow Shelah [6], [7] and assume the existence of a huge model 8.   |= T

such that every other model of T  which comes into consideration is an ele-

mentary substructure of BQ. 1= d/(aQ,_, «      i) will mean that tfKv0, ... , vn_A

is satisfied by aQ, ..., a _j  in 8_. C, D will denote subsets of BQ.  LiC) will

be the language obtained from   L   by adding individual constants as names

for the elements of C. We shall not distinguish between an element and its name.

pia, C) will denote the type of a  over C  i.e., pia, C) = {xjiiv A: d/ivA £ LiC),

(= d/(a)\. SiC) will be the set of all types of elements over C.  For a £ SiC),

Cj C C, q\Cx = q(~) LiCx) will be the reduct of q to C,.

A model 21   N T is called A-saturated if for all CCA  with  \C\ < A,

every type p £ 5(C) is realized by an element of A. 21  is saturated if it is

|A|-saturated.

(X, <), where < is a linear order, is an ordered set of indiscernibles

over D  if, for any n < oo, any two increasing n-tuples of elements of X
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satisfy the same formulas of L(D).  X  is a set of indiscernibles over D  if

any two zz-tuples of distinct elements of X  satisfy the same formulas of L(D).

These notions are naturally extended to those of an ordered set, resp. a set,

of indiscernible ^-tuples (cf. e.g. Shelah [6], [7]).

X (   X) will be the set of K-sequences (of sequences of length < k) of

elements of X. If r] £ KX, a < k, then rj\a will be the initial segment of 77

of length a. We shall denote by fl, b, etc. finite sequences of elements.

1. Preliminaries. In this section, we review some of the main notions

connected with stability.

T is called stable in A if for all C, \C\ = A implies that  |S(C)| = A.  T

is called stable if it is stable in some power.

It is easy to see that if T  is stable in A > \T\, X regular, then  T has a

saturated model of power A.   If A  is singular, one still gets a A   -saturated

model of power A  for every regular A    < A.

Another property is that if T  is stable then every ordered set of indis-

cernibles in a model of T is a set of indiscernibles (cf. Morley [3] and

Ressayre [4]).

Definitions   1.1 and 1.3 below, though very important, are not used in

our proof.

Definition 1.1. A Morley tree of height fi is a family [^(vq, <*s)' s e

<fM2\ such that:

(a) for all 17 £ ^2 the set of formulas 0^ = \<f>v\J.v0, ^v\a):  a < P^

is consistent with  T;

(b) for all 5 e<|U-2,cSsl(z;0, «sl)= ~| <Ps0(vQ, «s0).

It is immediately seen that if T is stable then T does not have arbi-

trarily high Morley trees. For T stable let p(T) be the first cardinal such

that T has no Morley tree of height p(T).  Less immediate but fairly easy is

Proposition 1.2 (Shelah [5]).  // T is stable then p(T) < \T\+.

A more involved notion is

Definition 1.3.  A Shelah tree is a family \iffs(vQ, a s): s £ <Kzu] of formu-

las such that:

(a) For every rj £ Kco, the set of formulas W^ = \^v\a(^0, «n\a):  a < K^

is consistent with T.

(b) For every a < k there is a formula y_a(f0, x) and a natural number

n(a)  such that for any  s £  °io, ^sm(vQ, a sm) = xj-v0' " sn?  for a11 m < <°>

and, any subset of \iff     (vn, fl      ): m < co\ which has more than n(a) ele-

ments is inconsistent.

Remark.  Notice that condition 1.3(b) says nothing about the formulas

iff (f     fl   )  for s  a sequence whose length is a limit ordinal.  A similar re-

mark applies to Definition 1.1.
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For a stable theory  T define k(T) to be the first cardinality such that T

has no Shelah tree of height KiT).  It is easy to see that k(T) < piT) and

strict inequality is possible.  Thus, KiT) < \T\   .

We are now going to reproduce the two important notions of splitting of

types.  Rather than defining "splitting" we define "nonsplitting".

Definition 1.4 (Shelah [9]).  (a) A type p £ 5(C)  does not split over D C

C if for all n < co and for all  a, b ra-tuples from C, if a   and b   satisfy the

same L(D)-formulas then for all ip{vQ, x) £LiD),ipAvQ, a) £ p iff dAvQ, b) £ p.

ib) A type p £ SiC) does not split strongly over D C C if for every in-

finite set X C C of indiscernibles over D, for all a, b 72-tuples of distinct

elements of X and for all <A(f0, x) £ LiD), ^ivQ, a) £ p iff ifriv., b) £ p.

These notions are related to the previous ones in

Theorem 1.5.   Ler T  be stable, (a) iShelah [6] and the author [l], inde-

pendently).  If p £ SiC)  then there is D C C, \D\ < piT), such that p does not

split over D.

ib) iShelah [6]).  If p £ SiC) then there is D C C, \D\ C KiT), such that

p does not split strongly over D.

Proof.  (The references in Shelah [6] are 2.7 for (a) and 4.3 for (b).)  The

proof of (a) is essentially the same as that of 1.3 in [2]; it is similar to, but

simpler than, the proof of (b) which we are going to reproduce (in outline) at

the suggestion of the referee.

Assuming that a type p, p £ SiC), does not satisfy the conclusion of (b),

we construct a Shelah tree of height kCT). This will contradict the definition

of KiT).  Our construction will yield not only a Shelah tree {d/ (i>  , a   ):

s £ <K(   '00], but also elementary maps f    such that for all  a < kCT) and all

■s £   co , the following conditions hold:

(i)  the domain of /    is D   = ia:  a  is a member of some sequence

as\B> P — a^ an<^ tne range of /    is a set Da, Da C C (thus, the range of /

depends only on the length a  of s, and not on s itself);

(ii)  if t is an initial segment of s, then /  C / ;  and

(iii) tprsiv0, fsias)) e p.

The construction will be done by induction on  a < KiT), the induction assump-

tion being that ^siv0, a   ) and /    have been defined for all s of length <a

in such a way that they satisfy conditions 1.3(b) and (i)—(iii) (notice that

conditions (i)—(iii) imply 1.3(a)).  The case of a  limit is trivial (take

d/sivQ, a~s) to be fn = v' see the Remark just after Definition 1.3).  To cope

with the case of a = (3 + 1  we must indicate how to define dj     ivn, a      )
" ~ smK   0'      sm'

and / for all m < 00 and 5 of length /3. By the induction assumption, we

are given the set D« (the common range of the functions f , s of length /3)

and it satisfies that D„C C and \D A < KiT). As we assume 1.5(b) to be
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false, p  splits strongly over Do. It follows that there exist a countable

infinite set X = !xQ, x.,...\CC of indiscernibles over Do, a formula

S(f     z7) with  u   a &-tuple and disjoint ^-tuples, say, y    = (xQ, . . . , *._,),

y j = (xk.*2t-l)  such that ^v0> ^0^ ^~' ^o'^l^ e P- Given anY s

of length fi, let B = \b0, b., ... ! be a set such that Ds' uB is elementarily

isomorphic to DgUX by an isomorphism extending /    and mapping b. to

x     i < co.  For m < co, define a '    = (&.,     , ... , b.,      ,    ,), fl "    =
z' ' sm 2km' '     2km+k-l  '     sm

(i,,      ,. 6,,      ,,    ,)  and a       = a '~ a"   . Let iff     (v., a     ) =
2zim+Ze' '     2zem+2fe-l sm sm    sm ~smv   0'      sm'

8(vn, a      ) A    | 8(vn, a      ) and let /       be an isomorphism extending  /    and
O1      sm 01      sm 'sm " 6   's

mapping a        to y „y .. We are now one small but important step short of the

complete proof. We must show that condition 1.3(b) holds for {iff     (vQ, a      ):

ztz < A! for all s  of length jS.  This last step will be illuminative because it

will explain how that condition arises naturally.

We have defined above y _  and y.. Define in general y*. = (x- .,, ... ,

x2 k k-1^' Then [y0, y j, ... \ is a set of indiscernible ^-tuples which is isomor-

phic to any of the sets \a~sQ, a   Q, asl, ^^'i) •• • i for s of length <3.  1.3(b)

will follow from

Claim (Shelah [7, 5.9A])w  There is an n < co  such that any subset of

\8(vn, y~- . ) A —i ̂ (f0i V2 ■  i):  z < w] having cardinality > n  is inconsistent.

Proof of the claim.   Extend {y .:  i < co\ to a set \y~.: i < X\ of indiscerni-

ble ^-tuples, where A  is a cardinality in which  T is stable.  If the claim is

false, then an easy compactness argument shows that for every  / C A, the

set of formulas  A. = |z5(zz     y". ):   i £ 1} U {—|z3(tz0, ~y .):   i 4 l\  is consistent

with  T.  This yields  2    distinct types over a set of power A, contradicting

the A-stability of T.

The proof of 1.5(b) is now complete.

The following is a special case of 1.5(b):

Corollary 1.6    (Shelah).   Let T  be stable.  If X  is a set of indiscerni-

bles over D  and CQ   is a finite set, then there is a set Xn C X with  \XA <

k(T) such that X - X.   is a set of indiscernibles over D U CQ  (z'zz fact, over

DUC0UXQ).

As a special case of 1.5(a), the author independently obtained 1.6 weakened

with  |XQ| < p(T) instead of |XQ| < k(T) (cf. [l] or [2, 1.3]).

We next state a technical lemma which we use in our proof. Arguments

of this sort have been repeatedly used; see, e.g., Shelah [5], [6], [7], and go,

in essence, back to Morley [3].

Lemma 1.7.   Let q £ S(C), D C C and let \cto\Q<a be a sequence of ele-

ments of C such that for all y < a, p(a      D U \ao\^y) = q\D U iflfl!fl<y.

(a) // a  does not split over D  then\a n\a<a is a set of indiscernibles

over D .
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(b) // a does not split strongly over D and if ia^i,^ z's a set of in-

discemibles over D, then so is  {ag l«<a.-

Proof of (b).   It suffices to show that the sequence  {a a \a<a is an ordered

set of indiscernibles.  We prove this by induction on a.  For a = a) there is

nothing to prove and for a, limit the induction is trivial.  Assume that a = y

+ 1  and {<*g\g<y  is a set of indiscernibles over D.  To show the same for

{dg\g<a we have to show that a, a     and a   , ag,       satisfy the same L(D)-

— _ , " ~ 1
formulas where a ={aR ,. .., aR       ) , a    = {aRI , ... , aR,     )  with 18. <

... < /3  _2 < y and /3Q  < . .. < /3n_ j < y.  Taking into consideration all the

assumptions, including the induction assumption, we get that for iff(x, vA £

LiD), t= iff(a, a   ) iff \f/<a , vQ) £ q iff t/r(a ', vQ) e a iff   N <A(« ', ««       )•

Q.E.D. "-1

The most important fact concerning stable theories is, perhaps, the

following.

Theorem 1.8 (Shelah [6]). // T is stable then there is XQ, \T\ < AQ <

21   I, such that for all A > \T\, T is stable in A iff A > A.  and A^i>' = A.

Corollary 1.9.  // T is stable in A then KiT) < cf A.

2. The theorem.  We are going to prove

Theorem 2.1.  // T is stable in A, A z's singular and A > \T\, then T has

a saturated model of power A.

Proof. Let A = 2.    ,. A.   where iA. }-<cf \ is an increasing sequence of

regular cardinals.  We may assume that A   > cf A + \T\.  Take an increasing

elementary chain  i2I. }.    , ^ of models of T  such that  |2I. | < A  and 21.  is

A.-saturated.  The model 21 =  U-    f.2I. has power A  and we will show that

it is saturated.

Let CCA, \C\ < A and let p £ SiC). We want to prove that p is real-

ized in 21.  Let q 2 p be an extension of p to a type q £ SiA).  By 1.5(b),

there is D C A, \D\ < KiT) < cf A  such that a does not split strongly over D.

Because the power of D  is so small, D C A .  for some  i < cf A.  W.l.o.g. we

may assume that D C A.. Define a sequence of elements bg, /8 < \T\   , such

that b0 £ AQ  and for all y < |T|+, piby, D u{bp\B<y) = q\D ulfcg}^. This

is possible since 2tQ is AQ-saturated and AQ > \D\ + \T\. By 1.5(a) there is an aQ <

\T\    such that q\D U {bg Iq^jI + does not split over D U {bg \g<a . It follows, by

1.7(a), that {bg\a </3<It|+ is a sequence of indiscernibles over D.  Renam-

ing ba    g= ag we conclude that there is a sequence iao S^ItI + of elements

ag £ A-   s.t.  {ag ig^fl + is a set of indiscernibles over D  and, for all y <

\T\  , piay, D U {ag\g<y) = q\D v{ag\g<y. We now come to the heart of the

proof.
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Claim 2.2.   For every finite set CQ, CQ C A, all but less than  \T\     ele-

ments of {aB^0<\r\+  satisfy q\CQ.

Proof of 2.2.   W.l.o.g. we may assume that  CQ C A       Define a„, \T\    <

[3 < \T\+ • 2, such that    a^ £  A2     and for all y,    | T\ + < y < | T\ + • 2,

p(fly, DuC0U [flo }o^y ) = q\D uC0U [flo L<y . Since q  does not split

strongly over D, we conclude, by 1.7(b), that \a„ lajf |+.2  is a set of indis-

cernibles over D.  By 1.6, there is XQ C {aB^8<\T\+-2  w*tn  l^ol ^ 1^1     such

that X = [flg }fl<[7-| +.2 _ ^o  *s a set °^ indiscernibles over Cn.  X  certainly

contains some fl^ with j8 > |T|    and that a„ realizes fl|C„ (by the very definition

of flo for /3 > \T\  ). It follows that every element of X realizes q\C.. This proves

2.2 since X contains all but less than \T\    elements of {as^B<\T\+'

Returning to the proof of 2.1, define [°« !|r|+</3<\ such that a„ £ A   and

for all  y < A, p(a      D U l«glg<.y ) = q\D uiflgia-.,. This can be done induc-

tively provided one makes sure that \aa^a<\.^ A . for all  z < cf A.  Again by

1.7(b), we conclude that  Y = {an^R<\is a set °^ indiscernibles over D.  Also,

it follows from 2.2 that for all finite C, C A  there is Yr   C Y, \Yr   I < |T| +
. I 0 0

such that every element of Y - VA    realizes q\CQ.

Let us go back to our initial C with \C\ C A. As Y = Ul^r- : CQ C

C, CQ finite! has power < \C\ • \T\ < A, it follows that the set Y — Y is

nonvoid and every element in it realizes  q\C = p.  Q.E.D.

Shelah noticed [7, B3] that our proof shows in fact that whenever [21. ].

is an increasing elementary chain such that ?I. is A.-saturated where cf 8 >

k(T)  and [A. !.<s  is an increasing (not necessarily strictly) sequence of

cardinals with 2.^.A. = A > \T\ then 21 = LJ.,_2I.  is A-saturated.  He further
z<5   i '    ' z<5    z

noticed that this implies, even for singular A, the existence of a A-atomic

(cf. [2]), A-prime model over every C provided that A > \T\  and cf A > k(T).

To construct such a model, one takes an increasing sequence [A.: i < cf A]

of regular cardinals >\T\   whose limit is A  and then constructs a model 21

such that A - C U !«a5a<x> l°r all  i < cf A, A . = C U \aa}a<^    is the universe

of a A.-saturated model, and for all a < A., p(aa, C ^{aB^B<a) IS A.-isolated

(see [2], [4]  or [5] for details of such a construction).
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