On a generalized version of the Nakayama conjecture
HTML articles powered by AMS MathViewer
- by Maurice Auslander and Idun Reiten
- Proc. Amer. Math. Soc. 52 (1975), 69-74
- DOI: https://doi.org/10.1090/S0002-9939-1975-0389977-6
- PDF | Request permission
Abstract:
Nakayama proposed a conjecture which is equivalent to the following: If $\Lambda$ is a finite dimensional algebra over a field and the dominant dimension of $\Lambda$ is infinite, then $\Lambda$ is self-injective. In this paper we study a generalized version of this conjecture.References
- Maurice Auslander, Representation theory of Artin algebras. I, II, Comm. Algebra 1 (1974), 177–268; ibid. 1 (1974), 269–310. MR 349747, DOI 10.1080/00927877408548230
- Maurice Auslander and Idun Reiten, Stable equivalence of dualizing $R$-varieties. V. Artin algebras stably equivalent to hereditary algebras, Advances in Math. 17 (1975), no. 2, 167–195. MR 404243, DOI 10.1016/0001-8708(75)90091-2
- J. P. Jans, Some generalizations of finite projective dimension, Illinois J. Math. 5 (1961), 334–344. MR 183748
- Bruno J. Müller, The classification of algebras by dominant dimension, Canadian J. Math. 20 (1968), 398–409. MR 224656, DOI 10.4153/CJM-1968-037-9
- Tadasi Nakayama, On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg 22 (1958), 300–307. MR 104718, DOI 10.1007/BF02941960
- Hiroyuki Tachikawa, On dominant dimensions of $\textrm {QF}$-3 algebras, Trans. Amer. Math. Soc. 112 (1964), 249–266. MR 161888, DOI 10.1090/S0002-9947-1964-0161888-8 —, Quasi-Frobenius rings and generalizations, Lecture Notes in Math., vol. 351, Springer-Verlag, Berlin and New York, 1973.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 69-74
- MSC: Primary 16A52
- DOI: https://doi.org/10.1090/S0002-9939-1975-0389977-6
- MathSciNet review: 0389977