The fixed point property for homeomorphisms of $1$-arcwise connected continua
HTML articles powered by AMS MathViewer
- by Lee Mohler
- Proc. Amer. Math. Soc. 52 (1975), 451-456
- DOI: https://doi.org/10.1090/S0002-9939-1975-0391064-8
- PDF | Request permission
Abstract:
It is shown that continua which are arcwise connected and contain no simple closed curves have the fixed point property for homeomorphisms, answering in the affirmative a question of Bing. The proof uses measure theoretic techniques. Given a homeomorphism $h$ of a compact metric space $X$ onto itself, a probability measure is constructed on $X$ which is invariant under $h$.References
- R. H. Bing, The elusive fixed point property, Amer. Math. Monthly 76 (1969), 119–132. MR 236908, DOI 10.2307/2317258
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 0188387
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751 —, Topologie. Vol. II, Monografie Mat., Tom 21, PWN, Warsaw, 1961; English transl., PWN, Warsaw; Academic Press, New York, 1968. MR 24 #A2958; 41 #4467.
- G. S. Young, Fixed-point theorems for arcwise connected continua, Proc. Amer. Math. Soc. 11 (1960), 880–884. MR 117711, DOI 10.1090/S0002-9939-1960-0117711-2
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 451-456
- MSC: Primary 54H25; Secondary 54F50
- DOI: https://doi.org/10.1090/S0002-9939-1975-0391064-8
- MathSciNet review: 0391064