NONDEGENERATE HIGHER DEGREE FORMS
OVER DEDEKIND DOMAINS

D. B. COLEMAN AND JOEL CUNNINGHAM

ABSTRACT. It is determined which finitely generated projective modules over a Dedekind domain admit nondegenerate symmetric r-linear forms.

In [1] D. K. Harrison introduces a Grothendieck ring based on nondegenerate symmetric r-linear forms, \(r \geq 2 \), over a Noetherian commutative ring. The structure results are quite strong for \(r \geq 3 \).

In this note we determine which finitely generated projective modules over a Dedekind domain admit a nondegenerate r-linear form.

Definition. Let \(R \) be a commutative ring and let \(V \) denote a finitely generated \(R \)-module. A symmetric r-linear map \(\theta : V \rightarrow R \) is said to be nondegenerate if the induced group homomorphism \(\Gamma : V \otimes \cdots \otimes V \rightarrow \text{Hom}_R(V, R) \)
\[\Gamma(x_1 \otimes \cdots \otimes x_{r-1})(x) = \theta(x_1, \ldots, x_{r-1}, x) \]
is surjective. In this case \((V, \theta)\) is called a nondegenerate space. Harrison's ring is the Grothendieck ring based on isomorphism classes of nondegenerate symmetric r-linear space under orthogonal direct sum and tensor product.

According to [1, Lemma 2.6], if \((V, \theta)\) is nondegenerate, then \(V \) is projective; so let \(R \) be a Dedekind domain and \(V \) a finitely generated projective \(R \)-module. Thus \(V \cong \mathcal{U} \otimes R \oplus \cdots \oplus R \) for some ideal \(\mathcal{U} \) of \(R \). If \(V \) admits a nondegenerate bilinear form, then \(\Gamma : V \rightarrow V^* \) induced by \(\theta \) is an isomorphism, so we see that \(\mathcal{U} \cong \mathcal{U}^{-1} \), i.e. \(\mathcal{U}^2 \) is principal. Conversely if \(\mathcal{U}^2 = \lambda R \) for some \(\lambda \) in the field of fractions \(K \) of \(R \), then it is easy to see that \(\theta(x, y) = xy/\lambda \) is a nondegenerate bilinear form on \(V \). Thus \(V \) admits a nondegenerate bilinear form if and only if \(\mathcal{U}^2 \) is principal. Similarly one argues that \(\mathcal{U} \) admits a nondegenerate r-linear form if and only if \(\mathcal{U}^r \) is principal.

Now consider the case \(r \geq 3 \) with rank \(V > 1 \). We claim that in this case \(V \) will always admit a nondegenerate form \(\theta \). It will suffice to consider \(V = \mathcal{U} \oplus R \). Let \(e_1, e_2 \in K \oplus K \) be such that \(V = \mathcal{U}e_1 + Re_2 \). A symmetric r-linear form on \(V \) corresponds precisely to elements \(\mu_0, \mu_1, \ldots, \mu_r \), where \(\mu_k \in \mathcal{U}^{-k}, k = 0, \ldots, r \) as follows: Given the \(\mu_k \) we define \(\theta \) on \(K \oplus K \) by \(\theta(e_{i_1}, \ldots, e_{i_r}) = \mu_k \) if exactly \(k \) of the subscripts \(i_1, \ldots, i_r \) are equal to 1. Then since \(\mu_k \in \mathcal{U}^{-k} \), \(\theta \) restricted to \(V^r \) gives a mapping from \(V^r \) into \(R \).

Presented to the Society, January 17, 1974 under the title Forms on Dedekind domains; received by the editors July 29, 1974.

Key words and phrases. Dedekind domain, projective module, nondegenerate form.
Lemma. Let θ be a symmetric r-linear form on $\mathbb{U} \oplus \mathbb{R}$ associated with $\mu_0, \mu_1, \ldots, \mu_r$ as above. In order that θ be nondegenerate, it is necessary and sufficient that for any $\alpha \in \mathbb{U}^{-1}$, $x \in \mathbb{R}$, the equations

$$x_{r-1}\mu_r + x_{r-2}\mu_{r-1} + \cdots + x_0\mu_1 = \alpha,$$

$$(*)$$

$$x_{r-1}\mu_r + x_{r-2}\mu_{r-2} + \cdots + x_0\mu_0 = x$$

have simultaneous solutions with $x_j \in \mathbb{U}$, $j = 0, \ldots, r - 1$.

Proof. It follows directly from the definition that θ is nondegenerate iff given $\alpha \in \mathbb{U}^{-1}$, $x \in \mathbb{R}$ there are $a^1_1 \cdots a^1_{r-1} \in \mathbb{U}$, $z^1_1, \ldots, z^1_{r-1} \in \mathbb{R}$, $i = 1, \ldots, m$, such that

$$\left(\sum_{i=1}^{m} a^1_i \cdots a^1_{r-1} \right) \mu_r + \left(\sum_{j=1}^{r-1} \sum_{i=1}^{m} a^1_i \cdots \hat{a}^1_j \cdots a^1_{r-1} \right) z^1_j \mu_{r-j} + \cdots + \left(\sum_{j=1}^{r-1} \sum_{i=1}^{m} a^1_i \cdots \hat{a}^1_j \cdots \hat{a}^1_{r-j} \right) z^1_j \mu_{r-j}$$

and

$$\left(\sum_{i=1}^{m} a^t_i \cdots a^t_{r-1} \right) \mu_{r-1} + \left(\sum_{j=1}^{r-1} \sum_{i=1}^{m} a^t_i \cdots \hat{a}^t_j \cdots a^t_{r-1} \right) z^t_j \mu_{r-1-j} + \cdots + \left(\sum_{j=1}^{r-1} \sum_{i=1}^{m} z^t_i \cdots z^t_{r-1} \right) \mu_0 = x.$$

(A caret over a symbol indicates its deletion.) Thus necessity is clear.

Now suppose we have a solution x_0, \ldots, x_{r-1} to $(*)$, with $x_j \in \mathbb{U}$, $j = 0, \ldots, r - 1$. We show by induction that there are positive integers $M_1 < M_2 < \cdots < M_{r+1}$, such that for each $t \leq r$ and each $s \leq t$,

$$\sum_{i=1}^{M_{t+1}} a^t_i \cdots \hat{a}^t_j \cdots \hat{a}^t_{r-1} \cdots a^t_{r-1} z^t_i \cdots z^t_{j-1} = x_{r-s-1}.$$

Choose $a^1_1, \ldots, a^1_{r-1} \in \mathbb{U}$, $i = 1, \ldots, M_1$, such that $\sum_{i=1}^{M_1} a^1_i \cdots a^1_{r-1} = x_{r-1}$. Choose $z^1_j = 0$ for $1 \leq j \leq r - 1$, $i = 1, \ldots, M_1$.

Now suppose $t \geq 1$ and $M_1 < M_2 < \cdots < M_t$ have been chosen along with $a^t_1, \ldots, a^t_{r-1}; z^t_1, \ldots, z^t_{r-1}$ such that $\sum_{i=1}^{M_t} a^t_i \cdots a^t_{r-1} = x_{r-1}$ and

$$\sum_{1 \leq k_1 < \cdots < k_{j-1} \leq r-1} a^t_{k_1} \cdots a^t_{k_{j-1}} z^t_{k_1} \cdots z^t_{k_{j-1}} = x_{r-j}$$

for $2 \leq j \leq t$.

For M_{t+1} choose

$$\sum_{i=1}^{M_{t+1}} a^t_i \cdots \hat{a}^t_j \cdots \hat{a}^t_{r-1} \cdots a^t_{r-1} z^t_i \cdots z^t_{j-1} = x_{r-s-1}.$$

Next choose

$$\sum_{i=1}^{M_{t+1}} a^{t+1}_i \cdots \hat{a}^{t+1}_j \cdots \hat{a}^{t+1}_{r-1} \cdots a^{t+1}_{r-1} z^{t+1}_i \cdots z^{t+1}_{j-1} = x_{r-(s+1)-1}.$$
Choose \(M_{t+1} > M_t \) and for \(i = M_t + 1, \ldots, M_{t+1} \), choose \(a^i_{t+1}, \ldots, a^i_{r-1} \) \(\in \mathbb{U} \) such that
\[
\sum_{i=M_{t+1}}^{M_{t+1}} a^i_{j+1} \cdots a^i_{r-1} = x_{r-t-1}.
\]
Let \(a^i_1 = \cdots = a^i_t = 0, z^i_1 = \cdots = z^i_t = 1, z^i_{t+1} = \cdots = z^i_{r-1} = 0 \) for \(M_t < i \leq M_{t+1} \). Then by induction,
\[
\sum_{i=1}^{M_{t+1}} a^i_1 \cdots a^i_{r-1} = \sum_{i=1}^{M_t} a^i_1 \cdots a^i_{r-1} = x_{r-1}
\]
and
\[
\sum_{j_1, \ldots, j_s \leq r-1} \sum_{i=1}^{M_t} a^i_{j_1} \cdots a^i_{j_2} \cdots a^i_{j_s} = x_{r-s-1} \quad \text{for } s < t.
\]
Finally,
\[
\sum_{j_1, \ldots, j_t} \sum_{i=1}^{M_{t+1}} a^i_{j_1} \cdots a^i_{j_2} \cdots a^i_{j_t} z^i_{j_1} \cdots z^i_{j_t} = \sum_{i=M_{t+1}}^{M_{t+1}} a^i_{t+1} \cdots a^i_{r-1} = x_{r-t-1}.
\]
Now the Lemma follows by induction, with \(m = M_r \). □

We now suppose that \(r \geq 3, \alpha \in \mathbb{U}^{-1} \) and \(x \in \mathbb{R} \), and show there are \(\mu_0, \ldots, \mu_r \) with \(\mu_i \in \mathbb{U}^{-i} \) such that (*) has a solution \(x_1, \ldots, x_{r-1} \) with \(x_i \in \mathbb{U}^i \). To this end choose \(\mu_0 = 1, \mu_1 = \cdots = \mu_{r-2} = 0; \) and choose \(\mu_{r-1} \in \mathbb{U}^{1-r} \) and \(\mu_r \in \mathbb{U}^{-r} \) such that
\[
\mu_r \mathbb{U}^{r-1} + \mu_{r-1} \mathbb{U}^{r-2} = \mathbb{U}^{-1}.
\]
We can do this since, in a Dedekind domain, any nonzero element of an ideal can be extended to a two element generating set for that ideal. Let \(x_{r-1} \in \mathbb{U}^{r-1} \), \(x_{r-2} \in \mathbb{U}^{r-2} \) be such that
\[
\mu_r x_{r-1} + \mu_{r-1} x_{r-2} = \alpha.
\]
Then let \(x_0 = x - \mu_{r-1} x_{r-1} \). It is clear that \(0, \ldots, 0, x_{r-2}, x_{r-1} \) is a solution to (*).

We summarize these results as follows.
Theorem. Let R be a Dedekind domain and let V be a finitely generated projective R-module of rank $n \geq 1$, and let $r \geq 2$. Suppose $V \cong \mathcal{U} \oplus R \oplus \ldots \oplus R$ where \mathcal{U} is a nonzero ideal in R. Then V admits a nondegenerate symmetric r-linear form iff

1. $r = 2$ and \mathcal{U}^2 is principal, or
2. $r \geq 3$, $n = 1$ and \mathcal{U}^r is principal, or
3. $r \geq 3$, $n \geq 2$.

Note that μ_0, \ldots, μ_r give a nondegenerate form on $\mathcal{U} \oplus R$ iff the homomorphism from $\mathcal{U}^{r-1} \oplus \mathcal{U}^{r-2} \oplus \ldots \oplus \mathcal{U} \oplus R$ to $\mathcal{U}^{-1} \oplus R$ given by the matrix

\[
\begin{pmatrix}
\mu_r & \mu_{r-1} & \cdots & \mu_1 \\
\mu_{r-1} & \mu_{r-2} & \cdots & \mu_0
\end{pmatrix}
\]

is surjective.

The referee has pointed out that the Theorem applies in case $R = D[x]$, where D is a Dedekind domain. See [2, Corollary (6.4)].

Finally, we answer a question raised by the referee, thanks to a conversation with Paul Eakin. Let R be a Noetherian domain of Krull dimension d. If \mathcal{U} is a projective ideal and if $r \geq d + 2$, then $\mathcal{U} \oplus R$ has a nondegenerate symmetric form. To see this it suffices to produce $\mu_r, \mu_{r-1}, \ldots, \mu_{r-d}$, with $\mu_j \in \mathcal{U}^{-j}$, such that $\mathcal{U}^r \mu_r + \cdots + \mathcal{U}^{r-d} \mu_{r-d} = R$. (For then these μ_j, along with $\mu_1 = 0$ will give a solution for the first equation in (*), with x_0 arbitrary. Then with $\mu_0 = 1$, we can choose x_0 so that the second equation holds.)

Take $\mu_r = 1$ and choose μ_{r-1} so that $\mathcal{U}^{r-1} \mu_{r-1}$ is not contained in any of the finite number of minimal primes over \mathcal{U}^r. This is possible since \mathcal{U}^{r-1} is invertible. Then $\mathcal{U}^r + \mathcal{U}^{r-1} \mu_{r-1}$ has height $\leq d - 1$. If $\mathcal{U}^r + \mathcal{U}^{r-1} \mu_{r-1} \neq R$, choose μ_{r-2} so that $\mathcal{U}^{r-2} \mu_{r-2}$ is not contained in any of the minimal primes over $\mathcal{U}^r + \mathcal{U}^{r-1} \mu_{r-1}$. Then $\mathcal{U}^r + \mathcal{U}^{r-1} \mu_{r-1} + \mathcal{U}^{r-2} \mu_{r-2}$ has height $\leq d - 2$. Continuing in this manner, we get the desired μ_r, \ldots, μ_{r-d}.

REFERENCES