Analytic Toeplitz operators with automorphic symbol
HTML articles powered by AMS MathViewer
- by M. B. Abrahamse
- Proc. Amer. Math. Soc. 52 (1975), 297-302
- DOI: https://doi.org/10.1090/S0002-9939-1975-0405156-8
- PDF | Request permission
Abstract:
Let $R$ denote the annulus $\{ z:1/2 < |z| < 1\}$ and let $\pi$ be a holomorphic universal covering map from the unit disk onto $R$. It is shown that if $\pi$ is a function of an inner function $\omega$, that is, if $\pi (z) = \pi (\omega (z))$, then $\omega$ is a linear fractional transformation. However, the analytic Toeplitz operator ${T_\pi }$ has nontrivial reducing subspaces. These facts answer in the negative a question raised by Nordgren [10]. Let $\phi$ be the function $\phi (z) = \pi (z) - 3/4$ and let $\phi = \chi F$ be the inner-outer factorization of $\phi$. An operator $C$ is produced which commutes with ${T_\phi }$ but does not commute with ${T_\chi }$ nor with ${T_F}$. This answers in the negative a question raised by Deddens and Wong [7]. The functions $\pi$ and $\phi$ are both automorphic under the group of covering transformations for $\pi$ and hence may be viewed as functions on the annulus $R$. This point of view is critical in these examples.References
- M. B. Abrahamse, Toeplitz operators in multiply connected regions, Bull. Amer. Math. Soc. 77 (1971), 449–454. MR 273435, DOI 10.1090/S0002-9904-1971-12734-9
- M. B. Abrahamse and R. G. Douglas, A class of subnormal operators related to multiply-connected domains, Advances in Math. 19 (1976), no. 1, 106–148. MR 397468, DOI 10.1016/0001-8708(76)90023-2
- M. B. Abrahamse and Thomas L. Kriete, The spectral multiplicity of a multiplication operator, Indiana Univ. Math. J. 22 (1972/73), 845–857. MR 320797, DOI 10.1512/iumj.1973.22.22072
- Lars V. Ahlfors, Bounded analytic functions, Duke Math. J. 14 (1947), 1–11. MR 21108 I. N. Baker, J. A. Deddens and J. L. Ullman, Entire Toeplitz operators (to appear).
- Joseph A. Ball, Hardy space expectation operators and reducing subspaces, Proc. Amer. Math. Soc. 47 (1975), 351–357. MR 358421, DOI 10.1090/S0002-9939-1975-0358421-7
- James A. Deddens and Tin Kin Wong, The commutant of analytic Toeplitz operators, Trans. Amer. Math. Soc. 184 (1973), 261–273. MR 324467, DOI 10.1090/S0002-9947-1973-0324467-0
- R. G. Douglas and Carl Pearcy, Spectral theory of generalized Toeplitz operators, Trans. Amer. Math. Soc. 115 (1965), 433–444. MR 199706, DOI 10.1090/S0002-9947-1965-0199706-5
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- Eric A. Nordgren, Reducing subspaces of analytic Toeplitz operators, Duke Math. J. 34 (1967), 175–181. MR 216321
- Donald Sarason, The $H^{p}$ spaces of an annulus, Mem. Amer. Math. Soc. 56 (1965), 78. MR 188824
- Michael Voichick, Ideals and invariant subspaces of analytic functions, Trans. Amer. Math. Soc. 111 (1964), 493–512. MR 160920, DOI 10.1090/S0002-9947-1964-0160920-5
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 297-302
- MSC: Primary 47B35
- DOI: https://doi.org/10.1090/S0002-9939-1975-0405156-8
- MathSciNet review: 0405156