Bounds for nearly best approximations
HTML articles powered by AMS MathViewer
- by Rudolf Wegmann
- Proc. Amer. Math. Soc. 52 (1975), 252-256
- DOI: https://doi.org/10.1090/S0002-9939-1975-0442563-1
- PDF | Request permission
Abstract:
Let $X$ be a uniformly convex space and $\psi$ be the inverse function of the modulus of convexity $\delta ( \cdot )$. Assume here that $\psi$ is a concave function. Let $V$ be a linear subspace of $X$ and let $f$ in $X$ be such that $||f|| = 1 = \min \{ ||f - v||:v\epsilon V\}$. Then for $0 < \delta \leqslant 1$ and for $v$ in $V$ with $||f - v|| \leqslant 1 + \delta$, it follows that $||v|| \leqslant K \cdot \psi (\delta )$. Let $T$ be a compact Hausdorff-space and $V$ a finite-dimensional subspace of $C(T,X)$. When $V$ has the interpolation property $({P_m})$ with $V = m \cdot \dim X$, then the same type of estimate as above holds.References
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- Ky Fan and Irving Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math. J. 25 (1958), 553–568. MR 98976
- G. Freud, Eine Ungleichung für Tschebyscheffsche Approximationspolynome, Acta Sci. Math. (Szeged) 19 (1958), 162–164 (German). MR 101440
- S. J. Poreda, On the continuity of best polynomial approximations, Proc. Amer. Math. Soc. 36 (1972), 471–476. MR 316717, DOI 10.1090/S0002-9939-1972-0316717-6
- Arnold Schönhage, Approximationstheorie, Walter de Gruyter & Co., Berlin-New York, 1971 (German). MR 0277960
- Ivan Singer, Best approximation in normed linear spaces by elements of linear subspaces, Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. Translated from the Romanian by Radu Georgescu. MR 0270044
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 252-256
- MSC: Primary 41A65
- DOI: https://doi.org/10.1090/S0002-9939-1975-0442563-1
- MathSciNet review: 0442563