Disk-like products of $\lambda$ connected continua. II
HTML articles powered by AMS MathViewer
- by Charles L. Hagopian
- Proc. Amer. Math. Soc. 52 (1975), 479-484
- DOI: https://doi.org/10.1090/S0002-9939-1975-0494000-9
- PDF | Request permission
Abstract:
R. H. Bing [3] proved that every atriodic, hereditarily decomposable, hereditarily unicoherent continuum is arc-like. Using this theorem, the author [5] showed that $\lambda$ connected continua $X$ and $Y$ are arc-like when the topological product $X \times Y$ is disk-like. In this paper we consider products that have a more general mapping property. Suppose that $X$ and $Y$ are $\lambda$ connected continua and that for each $\varepsilon > 0$, there exists an $\varepsilon$-map of $X \times Y$ into the plane. Then $X$ is either arc-like or circle-like. Furthermore, if $X$ is circle-like, then $Y$ is arc-like. Hence $X \times Y$ is either disk-like or annulus-like.References
- Ralph Bennett, Embedding products of chainable continua, Proc. Amer. Math. Soc. 16 (1965), 1026–1027. MR 181991, DOI 10.1090/S0002-9939-1965-0181991-2
- Ralph Bennett and W. R. R. Transue, On embedding cones over circularly chainable continua, Proc. Amer. Math. Soc. 21 (1969), 275–276. MR 238271, DOI 10.1090/S0002-9939-1969-0238271-X
- R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653–663. MR 43450
- C. E. Burgess, Chainable continua and indecomposability, Pacific J. Math. 9 (1959), 653–659. MR 110999, DOI 10.2140/pjm.1959.9.653
- Charles L. Hagopian, Disk-like products of $\lambda$ connected continua. I, II, Proc. Amer. Math. Soc. 51 (1975), 448–452; ibid. 52 (1975), 479–484. MR 375255, DOI 10.1090/S0002-9939-1975-0375255-8
- George W. Henderson, Proof that every compact decomposable continuum which is topologically equivalent to each of its nondegenerate subcontinua is an arc, Ann. of Math. (2) 72 (1960), 421–428. MR 119183, DOI 10.2307/1970224
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- Eldon J. Vought, Monotone decompositions of continua not separated by any subcontinua, Trans. Amer. Math. Soc. 192 (1974), 67–78. MR 341438, DOI 10.1090/S0002-9947-1974-0341438-X
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 479-484
- MSC: Primary 54F20
- DOI: https://doi.org/10.1090/S0002-9939-1975-0494000-9
- MathSciNet review: 0494000