On perturbing bases of complex exponentials in $L^{2}$ $(-\pi , \pi )$
HTML articles powered by AMS MathViewer
- by Robert M. Young
- Proc. Amer. Math. Soc. 53 (1975), 137-140
- DOI: https://doi.org/10.1090/S0002-9939-1975-0377075-7
- PDF | Request permission
Abstract:
A sequence of complex exponentials $\{ {e^{i{\lambda _n}t}}\}$ is said to be a Riesz basis for ${L^2}( - \pi ,\;\pi )$ if each function in the space has a unique representation $f = \Sigma {c_n}{e^{i{\lambda _n}t}}$, with $A\Sigma |{c_n}{|^2} \leqslant ||f|{|^2} \leqslant B\Sigma |{c_n}{|^2}$. It is known, for example, that if $|{\lambda _n} - n| \leqslant L < 1/4( - \infty < n < \infty )$, then $\{ {e^{i{\lambda _n}t}}\}$ is a Riesz basis. In this note we show that not only the orthonormal basis $\{ {e^{int}}\}$, but any Riesz basis of complex exponentials can be suitably perturbed.References
- William O. Alexander Jr. and Ray Redheffer, The excess of sets of complex exponentials, Duke Math. J. 34 (1967), 59–72. MR 206614
- William G. Bade and Philip C. Curtis Jr., Embedding theorems for commutative Banach algebras, Pacific J. Math. 18 (1966), 391–409. MR 202001, DOI 10.2140/pjm.1966.18.391
- R. P. Boas Jr., A general moment problem, Amer. J. Math. 63 (1941), 361–370. MR 3848, DOI 10.2307/2371530
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. MR 47179, DOI 10.1090/S0002-9947-1952-0047179-6
- M. Ĭ. Kadec′, The exact value of the Paley-Wiener constant, Dokl. Akad. Nauk SSSR 155 (1964), 1253–1254 (Russian). MR 0162088
- Norman Levinson, Gap and Density Theorems, American Mathematical Society Colloquium Publications, Vol. 26, American Mathematical Society, New York, 1940. MR 0003208, DOI 10.1090/coll/026
- Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019
- Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR 0298399, DOI 10.1007/978-3-642-51633-7
- Robert M. Young, Interpolation in a classical Hilbert space of entire functions, Trans. Amer. Math. Soc. 192 (1974), 97–114. MR 357823, DOI 10.1090/S0002-9947-1974-0357823-6
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 137-140
- MSC: Primary 30A98; Secondary 30A18, 46E15
- DOI: https://doi.org/10.1090/S0002-9939-1975-0377075-7
- MathSciNet review: 0377075