UNIQUENESS FOR NONLINEAR CAUCHY PROBLEMS
IN BANACH SPACES

JEROME A. GOLDSTEIN

ABSTRACT. Recently Medeiros and Diaz and Weinacht have considered
the question of uniqueness for the Cauchy problem for ordinary differential
equations in a complex Hilbert space. The present paper extends their re-
sults to the case of equations in an arbitrary real or complex Banach space.

1. Introduction. We shall establish uniqueness criteria for the Cauchy
problem
\[(d/dt)u(t) = f(t, u(t)),\]
\[u(0) = u_0;\]
here \(f\) takes values in a real or complex Banach space \(X\) and \(u_0 \in X\). Our
results generalize similar results recently obtained by L. A. Medeiros [7]
and J. B. Diaz and R. J. Weinacht [1], who dealt with the case when \(X\) is a
complex Hilbert space. Our proof is even infinitesimally simpler than those
of the above authors; the key tool is an elementary observation of T. Kato
concerning duality maps.

2. Preliminaries. Throughout this paper \(X\) is a real or complex Banach
space with norm \(\| \cdot \|\), and \(u\) is an \(X\)-valued function on an interval \(I\) of real
numbers. We use the terminology of Hille and Phillips [5]. \(u\) is strongly
absolutely continuous iff for each compact subinterval \([a, b]\) of \(I\) and for
each \(\epsilon > 0\), there is a \(\delta > 0\) such that \(\sum_{i=1}^{n} \| u(b_i) - u(a_i) \| < \epsilon\)
whenever \(a \leq a_i < b_i \leq b, i = 1, \ldots, n\), and \(\sum_{i=1}^{n} (b_i - a_i) < \delta\). If \(u\) is strongly absolutely
continuous, then the real-valued function \(\| u(\cdot) \|\) is absolutely continuous.

We state here some elementary sufficient conditions for strong absolute
continuity. If \(u\) is strongly differentiable a.e. with strong derivative \(u'\),
and if \(u(t) - u(a) = \int_{a}^{t} u'(s) \, ds\) (Bochner integral) for \(a, t \in I\), then \(u\)
is strongly absolutely continuous. (The converse, while false in general, is
true if \(X\) is reflexive.) If \(u\) has a weakly continuous strong derivative
(everywhere), then $u(t) - u(a) = \int_a^t u'(s) \, ds$, and u is strongly absolutely continuous.

Let X^* be the antidual of X, i.e., the space of all continuous antilinear (or conjugate linear) functionals on X. The image of $x \in X$ under $\phi \in X^*$ will be denoted by $\langle x, \phi \rangle$. For each $x \in X$ let $f(x)$ be the (nonempty) set of all $\phi \in X^*$ for which $\langle x, \phi \rangle = \|x\|^2 = \|\phi\|^2$. A duality map of X is a function $j: X \to X^*$ such that $j(x) \in f(x)$ for each $x \in X$.

We shall rely on the following simple but useful observation of T. Kato [6, p. 510].

Lemma. Suppose u has a weak derivative $u'(s) \in X$ at $t = s$, and suppose $\|u(t)\|$ is differentiable at $t = s$. Then

$$\|u(s)\|(d/dt)\|u(t)\|_{t=s} = \text{Re} \langle u'(s), \phi \rangle$$

for each $\phi \in f(u(s))$.

For completeness we quote Kato's short proof. Since

$$\text{Re} \langle u(t), \phi \rangle \leq \|u(t)\| \|\phi\| = \|u(t)\| \|u(s)\|$$

and

$$\text{Re} \langle u(s), \phi \rangle = \|u(s)\|^2,$$

we have

$$\text{Re} \langle u(t) - u(s), \phi \rangle \leq \|u(s)\| (\|u(t)\| - \|u(s)\|).$$

Dividing both sides by $t - s$ and letting $t \to s$ from above and from below, we obtain

$$\text{Re} \langle u'(s), \phi \rangle \leq \|u(s)\| (d/dt)\|u(t)\|_{t=s}.$$

3. The uniqueness theorems.

Theorem 1. Let f have domain D contained in $[0, c) \times X$ and range contained in X. Suppose that there is a duality map j of X such that

$$\text{Re} \langle f(t, x) - f(t, y), j(x - y) \rangle \leq t^{-1} \|x - y\|^2$$

whenever $t > 0$ and $(t, x), (t, y) \in D$. Then there is at most one solution u of (1), (2) on $[0, c)$ in the following sense:

(i) u is strongly absolutely continuous and has a strong right derivative u' a.e.;
(ii) $u'(t) = f(t, u(t))$ a.e. in $[0, c)$;
(iii) $u(0) = u_0$;
(iv) strong $\lim_{t \to 0^+} t^{-1}(u(t) - u(0)) = u_1$.

(ii) and (iv) together form a slightly weaker condition than the condition
(ii') \(u'(t) = f(t, u(t)) \) for \(t \in [0, c) \setminus N \), where \(N \) is a Lebesgue null set in \((0, c) \).

When \(X \) is a (real or complex) Hilbert space, \(\langle \cdot, \cdot \rangle \) is the inner product on \(X \) and \(j \) is the identity operator; thus the above result generalizes the corresponding results in [7], [1].

Proof of Theorem 1. The basic outline of the proof is as in [7], [1]. Let \(u, v \) be solutions of (1), (2) in the sense of (i)–(iv), with the same \(u_0', u_1' \).

We must show \(u(t) = v(t), 0 \leq t < c \). By Kato's lemma and (3) we have for a.e. \(t \in [0, c) \),

\[
\|u(t) - v(t)\| (d/dt)\|u(t) - v(t)\| = \text{Re} \langle f(t, u(t)) - f(t, v(t)), j(u(t) - v(t)) \rangle \\
\leq t^{-1}\|u(t) - v(t)\|^2.
\]

Claim. \((d/dt)\|u(t) - v(t)\| \leq t^{-1}\|u(t) - v(t)\| \) a.e. in \([0, c) \).

This is immediate for a.e. \(t \) for which \(u(t) \neq v(t) \). For a.e. \(t \in [0, c) \) for which \(u(t) = v(t) \) we have \(u'(t) = v'(t) \) by (ii), and

\[
\frac{d}{dt}\|u(t) - v(t)\| = \lim_{h \to 0^+} h^{-1}\|u(t + h) - u(t) - h^{-1}(v(t + h) - v(t))\| = 0,
\]

and thus our Claim is proved.

From the Claim it follows that \((d/dt)(t^{-1}\|u(t) - v(t)\|) \leq 0 \) a.e., and so the function \(t \rightarrow t^{-1}\|u(t) - v(t)\| \) is monotone nonincreasing on \((0, c) \). Also,

\[
\lim_{t \to 0^+} t^{-1}(u(t) - v(t)) = \lim_{t \to 0^+} \{t^{-1}(u(t) - u(0)) - t^{-1}(v(t) - v(0))\} = u_1 - u_1 = 0.
\]

It follows easily that \(u(t) = v(t) \) for all \(t \in [0, c) \), and the proof is complete.

We note, following [1], that \(t^{-1} \) in (3) cannot be replaced by \(Mt^{-1} \) for some \(M > 1 \). (Cf. Perron [8] for a counterexample.)

The final result is a generalized Osgood type uniqueness theorem. Let \(\phi(\cdot, \cdot) \) be a nonnegative measurable function defined on \((0, c) \times [0, \infty) \). Call \(\phi \) a permissible function iff whenever \(w \) is a nonnegative solution of \(w(t) \leq \int_t^c \phi(s, w(s)) \, ds \) a.e. in \([0, c) \), then \(w = 0 \) a.e.

Theorem 2. Let \(f \) have domain \(D \) contained in \([0, c) \times X \) and range contained in \(X \). Let \(\phi \) be a permissible function, and suppose there is a duality map \(j \) of \(X \) such that

\[
\text{Re} \langle f(t, x) - f(t)y, j(x - y) \rangle \leq \|x - y\| \phi(t, \|x - y\|)
\]

whenever \(t > 0 \) and \((t, x), (t, y) \in D \). Then there is at most one solution \(u \) of (1), (2) satisfying (i)–(iv) of Theorem 1.
Theorem 1 is the special case of Theorem 2 which corresponds to taking
\(\phi(t, r) = r/t \). Theorem 2 generalizes results in [7], [1]. For examples of permissible functions see Walter [9, pp. 80–85]. We gratefully acknowledge a suggestion of Hans Weinberger which led to the present formulation of Theorem 2.

Proof of Theorem 2. As in the proof of Theorem 1, let \(u, v \) be solutions to (1), (2) satisfying (i)–(iv). Arguing as in that proof we get
\[
\|u(t) - v(t)\| (d/dt)\|u(t) - v(t)\| = \Re \langle f(t, u(t)) - f(t, v(t)), j(u(t) - v(t)) \rangle \\
\leq \|u(t) - v(t)\| \phi(t, \|u(t) - v(t)\|);
\]
and we conclude as before that
\[
(d/dt)\|u(t) - v(t)\| \leq \phi(t, \|u(t) - v(t)\|) \quad \text{a.e. in } [0, c).
\]
Since \(\phi \) is permissible, it follows that \(\|u(t) - v(t)\| = 0 \) a.e., and the proof is complete.

4. Concluding remarks. The map \(j \), defined by
\[
j(f)(x) = \begin{cases}
0 & \text{if } f(x) = 0; \\
\|f\|_p^{-p} |f(x)|^{p-2} & \text{otherwise},
\end{cases}
\]
is a duality map for the real or complex space \(L^p(\Omega) \) on an arbitrary measure space \(\Omega \) for \(1 \leq p < \infty \). For a brief discussion of duality maps in Orlicz spaces, see [4].

The techniques in this paper can be used to extend other results concerning ordinary differential equations in a complex Hilbert space to an arbitrary Banach space setting. For instance, in Flett’s paper [3], Theorems 2 and 4 (on pp. 336, 341) hold if, in Flett’s notation, \(Y \) is a real or complex Banach space and \(\langle f(t, y) - f(t, z), y - z \rangle \) is replaced by \(\langle f(t, y) - f(t, z), j(y - z) \rangle \), where \(j \) is a duality map of \(Y \).

New uniqueness theorems for the Euler-Poisson-Darboux equation and other singular linear equations can be obtained as an application of the results of this paper. These results will appear elsewhere (cf. Donaldson-Goldstein [2]).

REFERENCES

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LOUISIANA 70118