ON ASYMPTOTIC BEHAVIORS OF ANALYTIC MAPPINGS
ON THE MARTIN BOUNDARY

MIKIO NIIMURA

ABSTRACT. Some generalizations of the analogue of Collingwood and Cartwright in the large of Iversen’s theorem are given.

Let f be a nonconstant analytic mapping of a hyperbolic Riemann surface R into a Riemann surface R'. Let R^* and R'^* denote the Martin compactification and any compactification of R and R', respectively. Δ and Δ' denote the Martin ideal boundary of R and the ideal boundary of R', respectively. $\overline{\Delta}$, A^c and $\text{int} A$ mean the closure, the complement and the interior of a set A ($\subset R^*$ or R'^*) with respect to R^* or R'^*, respectively. Let ∂A denote the relative boundary of A ($\subset R$ or R') with respect to R or R' and f_G the restriction of f to G ($\subset R$).

Let $\{G_n^{(e)}\}$ be a determinant sequence of Kerékjártó-Stoilow’s ideal boundary point e, and set $\Delta^e_n = \bigcap_n G_n^{(e)}$ and $\Delta^{G_n^{(e)}} = G_n^{(e)} \cap \Delta$. The cluster set of f for Δ^e_n is defined by $C(f, \Delta^e_n) = \bigcap_n \overline{f(G_n^{(e)})}$, and the range of f for Δ^e_n by $R(f, \Delta^e_n) = \bigcap_n f(G_n^{(e)})$.

In this paper we assume that the harmonic measure of Δ^e_n is positive.

For $b \in \Delta_1$, let F_b be a filter basis on R with respect to the fine topology, and set $\hat{f}(b) = \bigcap_{U \in F_b} \overline{f(U)}$. Here Δ_1 denotes the set of minimal points in Δ. If $\hat{f}(b)$ consists of a single point, then $f(b)$ is denoted by $\hat{f}(b)$.

We say that a curve $p = (t) (0 < t < 1)$ on R converges to e, when for every n, there exists $\ell(n)$ such that $\lambda(t) \subset G_n^{(e)}$ for all $t \geq \ell(n)$. $\lambda(t)$ denotes the end of this path: $p = (t) (0 < t < 1)$. Let $\Gamma(f, \Delta_G^{(e)})$ denote the set of asymptotic points along all the paths such that the end of each path is on $\Delta_G^{(e)}$, and set $\chi(f, \Delta^e_n) = \bigcap_n \Gamma(f, \Delta_G^{(e)})$ and $\chi^*(f, \Delta^e_n) = \bigcap_n \Gamma(f, \Delta_G^{(e)})$. If for any neighborhood V of $\alpha \in R^*$, $V \cap \Gamma(f, \Delta_G^{(e)})$ is a nonpolar set, we say $\alpha \in \Gamma(f, \Delta^e_n)$ and set $\chi^*(f, \Delta^e_n) = \bigcap_n \Gamma(f, \Delta_G^{(e)})$.

Lemma 1. If $\alpha \in \chi^*(f, \Delta^e_n) \cap C(f, \Delta^e_n) \cap R'$, then $\alpha \in \text{int} R'(f, \Delta^e_n)$.

Proof. Since $\alpha \in \chi^*(f, \Delta^e_n) \cap R'$, there exist a parametric disk V about α and $G_n^{(e)}$ such that $V \cap \Gamma(f, \Delta_G^{(e)})$ is a polar set. Let $w = \psi(q)$.
Let \(q \in V \) be a local parameter of \(V \), and we set \(\psi(V) = \{w; |w| < 1\} \) \(\psi(\alpha) = 0 \), \(W_r = \{w; |w| < r, 0 < r < 1\} \), \(C_r = \partial W_r \), and \(\psi \circ f_{G_N}(e) = g \).

Since \(W_1 \cap \Gamma(g, \Delta_{G_N}^{(e)}) \) is a polar set, its linear measure is zero. Hence \(\Gamma(g, \Delta_{G_N}^{(e)}) \cap C_r = \emptyset \) for almost all \(r \) in \(0 < r < 1 \). Let \(C_r \) have this property and fix \(r \).

Since \(\alpha \in \mathcal{C}(f, \Delta_e) \), we see that \(g^{-1}(W_r) \cap \mathcal{G}^{(e)}_n \neq \emptyset \) for all \(n \geq N \).

If there exists \(G \in \mathcal{G}^{(e)}_n \) such that \(G \subset \mathcal{G}_N^{(e)} \) and \(g(G) \subset W_r \), then for each point \(b \) of a set \(H_e \subset \Delta_1 \cap \Delta_e \) whose harmonic measure is positive, \(\hat{g}_G(b) \in \overline{W}_r \). Indeed the harmonic measure of \(\Delta_e \) is positive and \(g_G \) is a Fatou mapping of \(G \) into \(W_r \).

Hence there exists an asymptotic path \(\gamma \) from a point of \(G \) to each point \(b \) of \(H_e \) such that \(\lim_{p \to \gamma \cap \Delta_e} \phi_G(p) = \hat{g}_G(b) \). On the other hand, since \(\overline{W}_r \cap \Gamma(g, \Delta_C) \subset \hat{g}_G(b) \), for \(b \in H_e \) is a polar set, the harmonic measure of \(H_e \) is zero. This is a contradiction. Thus for all \(n \geq N \), we conclude that \(\mathcal{G}^{(e)}_n \cap \partial g^{-1}(W_r) \neq \emptyset \).

If \(\partial g^{-1}(W_r) \) contains closed Jordan curves accumulating to \(e \), then we see easily that \(w \in R(g, \Delta_e) \) for any point \(w \) on \(C_r \).

If for all \(n \geq N \), \(\mathcal{G}^{(e)}_n \) has at least one noncompact \(\gamma_\infty \) of \(\partial g^{-1}(W_r) \), let \(z = \phi(p) \) be a local parameter about \(p \in \mathcal{G}_N^{(e)} \), and set \(h = g \circ \phi^{-1} \). A function element \(Q(w) \) of \(z = h^{-1}(w) \) can be continued analytically along \(C_r \) infinitely often. Indeed if not, when \(w \) tends to a point \(w_1 \) \(\in \mathcal{C}_r \) along \(C_r \), \(\gamma_n \) is a path whose end is on \(\Delta_{G_n^{(e)}} \), and so \(w_1 \in \Gamma(g, \Delta_{G_n^{(e)}}) \). This is a contradiction.

Therefore any point \(w \) on \(C_r \) corresponds to an infinite number of points on \(\gamma_\infty \) for any \(n \), and hence \(w \in R(g, \Delta_e) \).

Therefore since for any point \(p \) of \(W_1 \), any neighborhood \((cW_1) \) of \(p \) contains points of \(R(g, \Delta_e) \), we get \(W_1 \subset R(g, \Delta_e) \) and \(\alpha \in \operatorname{int} R(f, \Delta_e) \), as claimed.

Corollary 1. If \(\mathcal{C}(f, \Delta_e) \) is nowhere dense, then \(\mathcal{C}(f, \Delta_e) \cap R' \subset \mathcal{X}(f, \Delta_e) \).

Proof. If \(\alpha \in \operatorname{int} R(f, \Delta_e) \), for a neighborhood \(V \) of \(\alpha \), any neighborhood \((cV) \) of any point \(\beta \in V \) contains at least one point of \(R(f, \Delta_e) \) and \(\mathcal{C}(f, \Delta_e) \) is not nowhere dense. Thus we have \(\mathcal{C}(f, \Delta_e) \cap R' \subset \mathcal{X}(f, \Delta_e) \).

Lemma 2. If \(\alpha \in \mathcal{X}(f, \Delta_e) \cap \mathcal{X}(f, \Delta_e) \cap \mathcal{C}(f, \Delta_e) \cap R' \), then \(\alpha \in R(f, \Delta_e) \).

Proof. Suppose that \(\alpha \notin R(f, \Delta_e) \). Since \(\alpha \in \mathcal{X}(f, \Delta_e) \cap \mathcal{X}(f, \Delta_e) \cap \mathcal{C}(f, \Delta_e) \cap R' \), there exist a parametric disk \(U \) about \(\alpha \) and \(G_N^{(e)} \) such that \(U \cap \Gamma(f, \Delta_{G_N^{(e)}}) \) is a polar set and \(\alpha \notin \Gamma(f, \Delta_{G_N^{(e)}}) \).

All the \(\alpha \)-points of \(f_{G_N}(e) \) are contained in a finite set of parametric
disks $\{U_k\}$ ($k = 1, 2, \ldots, L$) such that $U_i \cap U_j = \emptyset$ ($i \neq j$). Let V be a parametric disk about α satisfying $V \subset \left(\bigcap_{k=1}^{L} \Gamma_{G_N}^e(U_k) \right) \cup U$. We fix r such that $\Gamma(g, \Delta_{G_N}^e) \cap C_r = \emptyset$. There exists a diameter d_r of W_r such that $\Gamma(f, \Delta_{G_N}^e) \cap d_r = \emptyset$. There exists a diameter d_r of W_r such that $\Gamma(f, \Delta_{G_N}^e) \cap d_r = \emptyset$.

Since $b \in R(f, \Delta_r^e)$ for $b \in C_r$, there exists a connected component D of $g^{-1}(W_r)$ which is not relatively compact. Choose a point p on ∂D which is mapped by g to an endpoint of d_r. The function element $Q(w)$ corresponding to p can be continued analytically along d_r through the point 0 to the antipodal point and d_r is mapped on a cross-cut of D. But on the other hand, since D does not contain the zeros of g, we have a contradiction, and we conclude that $a \in R(f, \Delta_r^e)$.

Theorem 1. If R^* is a metrizable and resolutive compactification of R' and, for at least one n, $\Gamma(f, \Delta_{G_N}^e)$ is a polar set, then $R(f, \Delta_e^c) \cap R' \subset \chi(f, \Delta_e)$.

Proof. From Lemma 2, we have $R(f, \Delta_e^c) \cap R' \subset C(f, \Delta_e) \cup \chi(f, \Delta_e)$.

If $C(f, \Delta_e^c) \neq \emptyset$, there exist a parametric disk V and $G \in \{G_n^e\}$ ($G \subset G_n^e$) such that $f(G) \cap \overline{V} = \emptyset$. Since the mapping f_G of G into $R' - V$ is a Fatou mapping, it contradicts that the harmonic measure of H_e is positive, as we see from the proof of Lemma 1.

Thus from $\Gamma(f, \Delta_{G_n}^e) = \emptyset$, we have $R(f, \Delta_e^c) \cap R' \subset \chi(f, \Delta_e)$.

Lemma 3. If $\alpha \in \chi^*(f, \Delta_e^c) \cap C(f, \Delta_e) \cap R'$, then $\alpha \in \text{int} R(f, \Delta_e)$.

Proof. In Lemma 1, take "all r in $0 < r < 1$" instead of "almost all r in $0 < r < 1$" and consider "$W_1 \cap \Gamma(g, \Delta_{G_N}^e) = \emptyset$" instead of "$W_1 \cap \overline{\Gamma(g, \Delta_{G_N}^e)}$ is a polar set". Then we have $w \in R(g, \Delta_e)$ for all $w: 0 < |w| < 1$ as in the proof of Lemma 1.

If $w_0 \in W_{r/2}^e$ ($w_0 \neq 0$), we have $w_0 \in C(g, \Delta_e)$ and $W_{r/2}^e \cap \Gamma(g, \Delta_{G_N}^e)$ = \emptyset ($W_{r/2}^e = \{w; |w - w_0| < r/2\}$), and hence $0 \in R(g, \Delta_e)$.

Thus we have $W_1 \subset R(g, \Delta_e)$ and $\alpha \in \text{int} R(f, \Delta_e)$.

Theorem 2. $R(f, \Delta_e^c) \cap C(f, \Delta_e) \cap R' \subset \chi^*(f, \Delta_e)$.

Proof. From Lemma 3, we have

$\chi^*(f, \Delta_e^c) \subset C(f, \Delta_e^c) \cup R^e \cup (\text{int} R(f, \Delta_e))$;

that is,
Lemma 4. \(\text{int} C(f, \Delta_e) \subseteq \overline{R(f, \Delta_e)} \).

Proof. If \(\alpha \in \text{int} C(f, \Delta_e) \), for any neighborhood \(U \) of \(\alpha \), there exists a parametric disk \(V_0 \) about \(\alpha_0 \) satisfying \(V_0 \subseteq U \cap C(f, \Delta_e) \). Since \(\alpha_0 \in C(f, \Delta_e) \), there exists \(p_1 \in G_1^{(e)} \) such that \(\alpha_1 = f(p_1) \in V_0 \). We can take a parametric disk \(V_1 \) about \(\alpha_1 \) satisfying \(V_1 \subseteq V_0 \cap f(G_1^{(e)}) \). Repeating the same method, we have a sequence of parametric disks \(\{V_n\} (n = 1, 2, 3, \ldots) \) such that \(V_{n+1} \subseteq V_n \) and \(V_n \subseteq f(G_n^{(e)}) \). \(\beta \in \bigcap_n V_n \) is assumed by \(f \) in any \(G_n^{(e)} \), and hence \(\alpha \in \overline{R(f, \Delta_e)} \).

Corollary 2. \(R(f, \Delta_e)^c \cap R' \subseteq \chi^*(f, \Delta_e) \) if and only if \(R(f, \Delta_e) = R'^* \).

Proof. If \(C(f, \Delta_e) \neq R'^* \), there exists \(\alpha_0 \) such that \(\alpha_0 \in C(f, \Delta_e)^c \cap R' \subseteq R(f, \Delta_e)^c \cap R' \). If \(\alpha \in \chi^*(f, \Delta_e) \), then we have \(\alpha \in \overline{R(f, \Delta_e)} \) for any \(n \) and \(0 \in \overline{\Gamma(g, \Delta_n^{(e)})} \) for a parametric disk \(V \) about \(\alpha \). Since there exists \(\omega_n \in W_{1/n} \cap \overline{\Gamma(g, \Delta_n^{(e)})} \), there exists \(p_n \in G_n^{(e)} \) such that \(g(p_n) \in W_{1/n} \). Since \(p_n \) converges to \(e \) and \(g(p_n) \) converges to \(0 \), we see that \(0 \in C(g, \Delta_e) \) and \(\alpha \in C(f, \Delta_e) \). Hence we have \(\chi^*(f, \Delta_e) \subseteq C(f, \Delta_e) \) and \(\alpha_0 \notin \chi^*(f, \Delta_e) \). Thus if \(R(f, \Delta_e)^c \cap R' \subseteq \chi^*(f, \Delta_e) \), from Lemma 4, \(\overline{R(f, \Delta_e)} = R'^* \).

Conversely if \(\overline{R(f, \Delta_e)} = R'^* \), then we have, from Theorem 2,

\[
R(f, \Delta_e)^c \cap R' = R(f, \Delta_e)^c \cap C(f, \Delta_e) \cap R' \subseteq \chi^*(f, \Delta_e).
\]

Corollary 3. If the characteristic function of \(f \) (cf. [3]) is unbounded, then \(R(f, \Delta_e)^c \cap R' \subseteq \chi^*(f, \Delta_e) \).

Proof. If \(C(f, \Delta_e) \neq R'^* \), since \(f \) is a Lindelöf mapping, as in the proof of Theorem 1, the characteristic function of \(f \) is bounded, and a contradiction. Thus from Lemma 4 and Corollary 2 we get \(R(f, \Delta_e)^c \cap R' \subseteq \chi^*(f, \Delta_e) \).

REFERENCES