CHARACTERIZING $\text{hol}(\Omega)$
RONN CARPENTER

ABSTRACT. We find necessary and sufficient conditions for an algebra of complex valued functions defined on a σ-compact T_2 space to be algebraically and topologically equivalent to the algebra of analytic functions on a finitely connected domain in \mathbb{C}.

Let Ω be a finitely connected open set in the complex plane \mathbb{C}. Denote by $\text{hol}(\Omega)$ the set of all functions which are analytic on Ω. Note that $\text{hol}(\Omega)$ is an algebra with respect to the operations of pointwise addition and multiplication of functions and scalar multiplication by complex numbers. Note also that $\text{hol}(\Omega)$ is a Fréchet space with respect to the topology of uniform convergence on compact subsets of Ω.

Let X be a σ-compact T_2 space. That is, $X = \bigcup_{i=1}^{\infty} X_i$ where X_i is a compact subset of X. Let A be an algebra of complex valued continuous functions on X which is complete with respect to the topology of uniform convergence on the sets X_i and contains the constant functions. We give conditions on A which are necessary and sufficient for A to be topologically and algebraically isomorphic to $\text{hol}(\Omega)$ for some finitely connected open set Ω in \mathbb{C}.

In order to find conditions on A which are natural, we will first consider $\text{hol}(\Omega)$ and see what kind of conditions this algebra admits. If C_1, \ldots, C_n are the bounded components of $\mathbb{C} - \Omega$ and z_i is in C_i, then polynomials in the functions $f, f_1, \ldots, f_n, f(z) = z$ and $f_i(z) = (z - z_i)^{-1}$ are dense in $\text{hol}(\Omega)$.

A derivation on an algebra B is a linear function $d: B \rightarrow B$ which satisfies the multiplicative condition $d(ab) = d(a)b + ad(b)$ for every a and b in B. There is a natural derivation on $\text{hol}(\Omega)$ given by $d(g) = g'$ (g' denotes the ordinary derivative of g).

We will show that the conditions outlined in the above two paragraphs are necessary and sufficient for the algebra A to be topologically and algebraically isomorphic to $\text{hol}(\Omega)$. This result is given in the following

Theorem. The following two conditions are necessary and sufficient for A to be topologically and algebraically isomorphic to $\text{hol}(\Omega)$ for some finitely connected open set Ω in \mathbb{C}.

Received by the editors May 22, 1974.

Key words and phrases. Algebra of functions, derivation, Fréchet algebra.

Copyright © 1975, American Mathematical Society
1. There is a function f in A and complex numbers z_1, \ldots, z_n in the resolvent set of f such that polynomials in f, $(f - z_1)^{-1}, \ldots, (f - z_n)^{-1}$, are dense in A.

2. There is a derivation $d: A \to A$ such that $d(f)$ is never zero on X.

Proof. We noted in the paragraphs preceding the Theorem that conditions 1 and 2 are necessary. We will prove they are also sufficient.

Without loss of generality we can assume $X = \bigcup X_i$ where X_i is compact and $X_i \subset X_{i+1}$. We let M denote the collection of all continuous homomorphisms from A onto C. Note that $M = \bigcup M_i$ where M_i is the set of all homomorphisms m in M which satisfy the continuity condition $|m(g)| \leq \sup_{x \in X_i} |g(x)|$ for every g in A. For each g in A define a function $g: M \to C$ by $g(m) = \hat{g}(m) = m(g)$ (g is the Gelfand transform of g). Since for each x in X the map $g \to g(x)$ is a homomorphism of A onto C, we have that A is topologically and algebraically isomorphic to the algebra \hat{A} consisting of all functions of the form \hat{g}, g in A and having the topology of uniform convergence on the sets $\{M_i\}$.

Now consider the set $\hat{f}(M)$. It follows from the continuity of the elements of M and the fact that \hat{A} is generated by f, f_1, \ldots, f_n that \hat{f} is one-to-one. We define a set Ω in C by $\Omega = \hat{f}(M)$. For each g in A define a function \hat{g} on Ω by $\hat{g}(\hat{z}) = \hat{g}(\hat{f}^{-1}(z))$. Let \hat{A} denote the algebra of all functions \hat{g}, g in A. The map $g \to \hat{g}$ is a topological and algebraic isomorphism of A onto \hat{A} when A is given the topology of uniform convergence on the sets $\{M_i\}$.

The algebra \hat{A} is generated by the functions f, f_1, \ldots, f_n. For the function f we have $\hat{f}(z) = \hat{f}(\hat{f}^{-1}(z)) = z$. Hence \hat{A} is the completion of the polynomials in $z, (z - z_1)^{-1}, \ldots, (z - z_n)^{-1}$ on Ω with respect to the topology of uniform convergence on the sets $\{\hat{f}(M_i)\}$. If we can show that $\Omega = \bigcup \text{int } \hat{f}(M_i)$, then we will have that Ω is open and that the topology of uniform convergence on the sets $\{\hat{f}(M_i)\}$ is the same as the topology of uniform convergence on compact subsets of Ω. It will then follow that $\hat{A} \subset \text{hol} (\Omega)$. We can show that each bounded component of $C - \Omega$ contains one of the points z_i, $i = 1, \ldots, n$, then we can conclude that $\hat{A} \subset \text{hol} (\Omega)$.

We will first show that $\Omega = \bigcup \text{int } \hat{f}(M_i)$. Assume the contrary. That is, there is a z_0 in $\Omega - \bigcup \text{int } \hat{f}(M_i)$. Using the identification we have made between A and \hat{A}, we can regard d as a derivation on \hat{A}. We proved in a previous paper [2] that such a derivation is necessarily continuous. Let $\|\hat{g}\|_p = \max |\hat{g}(\hat{f}(M_n))|$. Since d is linear and continuous, there is a natural number p and a constant K such that $|d(\hat{g})(z_0)| \leq K\|\hat{g}\|_p$ for every \hat{g} in \hat{A}. The set $\hat{f}(M_p)$ is the spectrum of f in the algebra which is the completion of A with respect to the sup-norm on X_p. Hence $\hat{f}(M_p)$ is a compact subset.
of C with at most $n + 1$ components in its complement and each of the bounded components contains one of the points z_i, $i = 1, \ldots, n$. Let b denote the point derivation defined on \hat{A} by $b(g) = d(\hat{g})(z_0)$. Since $|d(\hat{g})(z_0)| < K||\hat{g}||_p$ for all \hat{g} in \hat{A}, we can extend b to a continuous derivation on \hat{A}_p, the completion of \hat{A}, with respect to the seminorm $||\cdot||_p$.

Since z_0 is a boundary point of $\hat{f}(M_p)$, there is a function g_0 in $C(\hat{f}(M_p))$ such that g_0 is analytic on $\text{int } \hat{f}(M_p)$ and $|g_0(z_0)| > |g_0(z)|$ for all $z \neq z_0$ in $\hat{f}(M_p)$. It follows from the properties of rational approximation (see [3]) that g_0 can be uniformly approximated on $\hat{f}(M_p)$ by polynomials in f, f_1, \ldots, f_n. Therefore g_0 is in \hat{A}_p. Since g_0 peaks at the point z_0, we have that b must be zero on all of \hat{A}_p (see [1, Corollary 1.6.7]). Since $\hat{f}(M_p)$ is the spectrum of f with respect to the algebra A_p and z_0 is in the boundary of $\hat{f}(M_p)$, there is a x_0 in X such that $z_0 = \hat{f}(x_0)$. We have shown that $0 = b(f) = d(f)(x_0)$, contradicting our assumption that $d(f)$ is never zero on X. Therefore we must have $\Omega = \bigcup \text{int } \hat{f}(M_j)$ and $A \subset \text{hol}(\Omega)$.

All that remains is to show that each bounded component of $C - \Omega$ contains one of the points z_i, $i = 1, 2, \ldots, n$. Suppose there is a bounded component C which does not contain any of the z_i. The boundary of C is a compact set. Since $\Omega = \bigcup \text{int } \hat{f}(M_j)$, we have that $C \subset \hat{f}(M_j)$ for some j. The functions in \hat{A} have unique analytic extensions to $\Omega \cup C$ and $\max|g(\hat{f}(M_j) \cup C)| = \max|g(\hat{f}(M_i))|$ for every g in \hat{A}. Let y be a point in C. The homomorphism $m: A \rightarrow C$, defined by $m(g) = g(y)$ for g in A, is continuous. This contradicts the fact that $\Omega = \hat{f}(M)$. Hence, every component of $C - \Omega$ contains one of the z_i, and we have $A = \text{hol}(\Omega)$.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 77004