COMPLETE DOMAINS WITH RESPECT TO THE CARATHÉODORY DISTANCE. II

DONG S. KIM

ABSTRACT. In [1] we have obtained the following result: Let D be a bounded domain in \mathbb{C}^n. Suppose there is a compact subset K of D such that for every $x \in D$ there is an analytic automorphism $f \in \text{Aut}(D)$ and a point $a \in K$ such that $f(x) = a$. Then D is a domain of bounded holomorphy, in the sense that D is the maximal domain on which every bounded holomorphic function on D can be continued holomorphically (cf. Narasimhan [2, Proposition 7, p. 127]). Here we shall give a stronger result: Under the same assumptions, D is c-complete. We note that a c-complete domain is a domain of bounded holomorphy, in particular, a domain of holomorphy. A domain of bounded holomorphy, however, need not be c-complete.

Let D be a bounded domain in \mathbb{C}^n. Let $p \in D$ and $q \in \overline{D}$. We define $c(p, q) = \lim_{y \to q} \inf_{y \to p} c(p, y)$, where c is the Carathéodory distance on D. A boundary point q of D is called an infinite distance boundary point if there is at least one sequence (q_n) of points of D which converges to q such that $c(p, q_n) \to \infty$ as $n \to \infty$, $p \in D$. This point q is called a stable infinite distance boundary point if $c(p, q_n) \to \infty$ as $n \to \infty$ for every sequence $(q_n) \to q$. We define the minimal boundary distance from p to the boundary of D by $\inf_{q \in \partial D} c(p, q)$. If p is replaced by a compact subset K of D, then the minimal boundary distance from K to the boundary of D is given by $\inf_{p \in K} (\inf_{q \in \partial D} c(p, q))$. We denote this by $\min c(K, \partial D)$. We observe that if D has exclusively stable infinite distance boundary points, $\min c(K, \partial D) = \infty$ for every compact subset K of D. If D has an unstable infinite distance boundary point q or a finite distance boundary point q, then $\min c(K, q) < \infty$ for every compact subset K of D.

Theorem. Let D be a bounded domain in \mathbb{C}^n. Suppose there is a compact subset K of D such that for any $x \in D$ there is an analytic automorphism $f \in \text{Aut}(D)$ and a point $a \in K$ such that $f(x) = a$. Then D is c-complete.

Proof. Assume that D is not c-complete. Then there is a boundary point which is not of stably infinite distance. Let $r = \min c(K, \partial D)$, where K is a compact subset of D in the hypothesis. Fix $q \in \partial D$ such that $c(K, q) = r$. Choose a sequence of points $\{x_n\}$ of D such that $\{x_n\} \to q$.
and \(c(x_0, x_n) < r/3 \) for all \(n \). Let \(f_n \in {\text{Aut}}(D) \) such that \(f_n(x_n) = a_n \in K \) for all \(n \). Since \(K \) is compact, \(\{a_n\} \to a \in K \). The family \(\{f_n\} \) of automorphisms of \(D \) is uniformly bounded so that there is a subsequence \(\{f_{k_j}\} \) which converges uniformly on compact subsets of \(D \) to a holomorphic mapping \(f: D \to \overline{D} \). Then we have \(f_{k_j}(x_0) \to f(x_0) \) and

\[
\frac{r}{3} \geq c(x_0, x_{k_j}) = c(f_{k_j}(x_0), f_{k_j}(x_{k_j})) = c(f_{k_j}(x_0), a_{k_j}) \quad \text{for all } k_j.
\]

Since the distance \(c \) is continuous, \(c(f_{k_j}(x_0), a_{k_j}) \to c(f(x_0), a) \). Since \(a \in K \) and \(f(x_0) \in \{x \in \overline{D} : \min c(K, x) \leq r/3\} \subseteq D, f(x_0) \in D \). So \(f(D) \not\subseteq \partial D \). By a theorem of Cartan (see, for instance, Narasimhan [2, Theorem 4, p. 78]), \(f \) is an automorphism of \(D \). But this is absurd since \(f_{k_j}^{-1}(a_{k_j}) = x_{k_j} \), if \(a \) is a limit point of \(\{a_k\} \) in \(K \), \(f^{-1}(a) \in D \). But \(\{x_k\} \) has no limit point in \(D \). Hence \(D \) is \(c \)-complete.

Corollary. If \(\Gamma \) is a discrete subgroup of \({\text{Aut}}(D) \) such that \(D/\Gamma \) is compact, then \(D \) is \(c \)-complete.

Corollary. If \(D \) is a bounded homogeneous domain then \(D \) is \(c \)-complete.

Remark. We may also claim the last corollary by the following facts.

Since every bounded homogeneous domain in \(\mathbb{C}^n \) is biholomorphic to an affinely homogeneous Siegel domain of second kind, and a Siegel domain of second kind is \(c \)-complete, a bounded homogeneous domain is \(c \)-complete.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611