SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

THE RUDIN-CARLESON THEOREM
FOR VECTOR-VALUED FUNCTIONS
J. GLOBEVIČNIK

ABSTRACT. The following generalization of the Rudin-Carleson theorem is proved. Let X be a complex Banach space and let $f: F \to X$ be a continuous function, where F is a closed subset of the unit circle in C of Lebesgue measure zero. There exists a continuous function g from the closed unit disc to X which is analytic on the open unit disc and satisfies (i) $g|F = f$, (ii) $\max_{|z| \leq 1} \|g(z)\| = \max_{z \in F} \|f(z)\|$.

Throughout, Λ (resp. $\bar{\Lambda}$) is the open (resp. closed) unit disc in C. Given a complex Banach space X and a compact space K, we denote by $C(K, X)$ the (Banach) space of all continuous functions from K to X with sup norm. We denote by $A(\Lambda, X)$ the (Banach) space of all continuous functions from Λ to X which are analytic on Λ, with sup norm. We write $C(K), A(\Lambda)$ for $C(K, C), A(A, C)$, respectively.

We prove the following generalization of the well-known Rudin-Carleson theorem (see [2], [3], [6]).

Theorem. Let X be a complex Banach space and F a closed set of Lebesgue measure zero on the unit circle in C. Let $f \in C(F, X)$. There exists $g \in A(\Lambda, X)$ such that $g|F = f$ and $\|g\|_{A(\Lambda, X)} = \|f\|_{C(F, X)}$.

Let K be a compact space and let \mathcal{U} be a closed subalgebra of $C(K)$. A set $F \subset K$ is called a peak set for \mathcal{U} if there exists $g \in \mathcal{U}$ such that $g(z) = 1$ ($z \in F$) and $|g(z)| < 1$ ($z \in K \setminus F$). Let X be a complex Banach space, A a closed subspace of $C(K, X)$ and F a closed subset of K. Define $kF = \{f \in A : \|f\| = 0\}$. kF is a closed subspace of A, hence A/kF with norm $\|f + kF\|$ is a Banach space. It is easy to see that T, defined by $T(f|F) = f + kF$, is a one-to-one linear operator from $A|F = 1/|F$: $f \in A|$ onto A/kF (see [5, p. 163]).

Lemma. Let X be a complex Banach space, K a compact space, A a closed subspace of $C(K, X)$, and \mathcal{U} a closed subalgebra of $C(K)$. Denote by
The set of all functions of the form \(z \mapsto \phi(z)f(z) \) where \(\phi \in \mathcal{A} \) and \(f \in \mathcal{A} \) and suppose that \(\mathcal{A} \subset \mathcal{A} \). Let \(F \subset K \) be a peak set for \(\mathcal{A} \). Then

(i) \(T: f \mapsto f + kF \) is an isometry from \(\mathcal{A}|F \) onto \(\mathcal{A}/kF \) and, consequently, \(\mathcal{A}|F \) is closed in \(C(F, X) \);

(ii) for each \(f \in \mathcal{A}|F \) there exists \(g \in \mathcal{A} \) satisfying \(g|F = f \) and \(\|g\|_{C(K, X)} = \|f\|_{C(F, X)} \).

To prove (i) and (ii) observe that the corresponding proofs for scalar-valued functions (\cite[p. 163, Theorem 3(c)], \cite[p. 164, Theorem 4]{5}) work for vector-valued functions as well.

Proof of theorem. \(A(\Delta) \) is a closed subalgebra of \(C(\overline{\Delta}) \) and it is easy to see that \(A(\Delta, X) \) is a closed subspace of \(C(\overline{\Delta}, X) \). Given \(\phi \in A(\Delta) \) and \(f \in A(\Delta, X) \), it is also easy to see that the function \(z \mapsto \phi(z)f(z) \) is again continuous on \(\overline{\Delta} \) and analytic on \(\Delta \), hence \(A(\Delta)A(\Delta, X) \subset A(\Delta, X) \). By \cite[p. 81]{3} \(F \) is a peak set for \(A(\Delta) \), and by (i) of the Lemma it follows that \(A(\Delta, X)|F \) is closed in \(C(F, X) \). Further, by the Mergelyan theorem for vector-valued functions (see \cite{1}), every function in \(C(F, X) \) is the uniform limit of a sequence of polynomials which means that \(A(\Delta, X)|F \) is dense in \(C(F, X) \). By the preceding discussion it follows that \(A(\Delta, X)|F = C(F, X) \). Now the assertion follows by (ii) of the Lemma. Q.E.D.

Remark. The generalization of the Rudin-Carleson theorem to vector-valued functions was motivated by the following problem posed by D. Patil at the Conference on Infinite Dimensional Holomorphy, University of Kentucky, May 1973. Let \(X \) be a complex separable Banach space. Does there exist an analytic function \(f: \Delta \to X \) such that the convex hull of \(f(\Delta) \) is contained and dense in the unit ball of \(X \)? Patil's problem will be discussed in a separate paper. Note that the Theorem gives a solution to this problem in the case when \(X \) is finite dimensional. To see this, let \(F \) be a Cantor set of Lebesgue measure zero on the unit circle in \(C \). Since every compact metric space is a continuous image of \(F \) (see \cite[p. 166]{4}), there exists a continuous function \(f \) from \(F \) onto the closed unit ball \(B \) of a finite-dimensional \(X \) by the compactness of \(B \). Then the extension \(g \in A(\Delta, X) \) given by the Theorem has the property that \(g(\Delta) \) is contained and dense in \(B \).

Acknowledgement. The author is grateful to Professor R. M. Aron and to Professor M. Schottenloher for some discussions concerning Patil's problem.

Added in proof. When the present paper was already in print the author found that a more general theorem than the theorem above was proved by E. L. Stout, *On some restriction algebras* (pp. 6–11 of *Function algebras*, Scott-Foresman, Chicago, Ill., 1966. MR 35 #3447).
REFERENCES

INSTITUTE OF MATHEMATICS, PHYSICS AND MECHANICS, UNIVERSITY OF LJUBLJANA, LJUBLJANA, YUGOSLAVIA