ON THE NUMBER OF GENERATORS
OF POWERS OF AN IDEAL

JUDITH D. SALLY

ABSTRACT. Let \(I \) be an ideal of a quasi-local ring. In this note we consider the question of how small—in terms of numbers of generators—the powers of the ideal \(I \) can be.

In this note all rings are commutative with identity. If \(I \) is an ideal of a ring, \(v(I) \) denotes the minimal number, which may be infinite, of generators of \(I \).

Proposition 1. Let \(I \) be an ideal of a quasi-local ring \(A \). If, for some integer \(t \geq 1 \), \(v(I^t) = 1 \), then either \(v(I^k) = 1 \) for all positive integers \(k \) or \(I \) consists of zero divisors. If, for some integer \(t > 1 \), \(v(I^t) = 2 \), then either \(v(I^k) = 2 \) for all positive integers \(k \) or \(I \) consists of zero divisors.

We will use the following lemmas in the proof of the proposition.

Lemma 2. Let \(I \) be an ideal of a ring \(R \). Let \(J \) and \(K \) be subsets of \(I \) such that \(J \subseteq I \) and \(K \subseteq I^{t-1} \) for some positive integer \(t \). If \(I^t = JK \), then \(I^{t+1} = J^2K \).

Proof. \(I^{t+1} = JK = JJK \subseteq J^2K = J^2K \).

It is an immediate consequence of Lemma 2 that if some power \(I^t \) of an ideal \(I \) is finitely generated then so is every higher power. Since \(I^t \) is generated by sums of monomials of degree \(t \) in elements of \(I \), take \(J \) to be the ideal generated by all the elements of \(I \) which appear in the monomials in such a generating set. Then \(J \) is a finitely generated ideal contained in \(I \), \(I^t = J^t \) and, by Lemma 2, \(I^{t+k} = J^{t+k} \) for \(k \geq 0 \).

If an element \(x \) in \(I \) appears in \(j \) monomials in some minimal generating set for \(I \) we will say that \(I^t \) has an overlap of length \(j \). It follows from Lemma 2 that if \(v(I^t) = n \) and if \(I^t \) has an overlap of length \(n \), then \(v(I^{t+k}) \leq n \) for \(k \geq 0 \). (In particular, if an ideal \(I \) in a quasi-local ring has some power principal, then every higher power is principal.)

If \((A, m)\) is a quasi-local ring and \(u \) an indeterminate we will often make use of the faithfully flat change of rings \(A \to A(u) = A[u]_mA[u] \).

Received by the editors September 13, 1974.

Key words and phrases. Quasi-local ring, ideal, faithfully flat ring extension.

1 The author received partial support from the National Science Foundation.
Lemma 3. Let \((A, m)\) be a quasi-local ring and \(I\) a finitely generated ideal. Let \(t\) be any integer > 1. Then either \(I^t\) is principal or \(I^tA(u)\) has an overlap of length 2.

Proof. Let \(I = (x_1, \ldots, x_n)\) and suppose that \(v(I^t) > 1\), say

\[I^t = (x_{i_1}^{\alpha_1} \ldots x_{i_r}^{\alpha_r}, \ldots, x_{j_1}^{\beta_1} \ldots x_{j_s}^{\beta_s}) \]

with \(\alpha_i, \beta_i\) positive integers such that \(\alpha_1 + \cdots + \alpha_r = \beta_1 + \cdots + \beta_s = t\). Assume that every \(x_i\) appears in at most one monomial in this generating set for \(I^t\). Now

\[x_{i_1}^{\beta_1-1} x_{j_1}^{\beta_1} x_{i_2}^{\beta_2} \ldots x_{j_s}^{\beta_s} = ax_{i_1}^{\alpha_1} \ldots x_{i_r}^{\alpha_r} + \cdots + bx_{j_1}^{\beta_1} \ldots x_{j_s}^{\beta_s} \]

for some \(a, \ldots, b \in A\). If one of the coefficients \(a, \ldots, b\) is not in \(m\) we can replace the generator it multiplies by \(x_{i_1}^{\beta_1-1} x_{j_1}^{\beta_1} x_{i_2}^{\beta_2} \ldots x_{j_s}^{\beta_s}\) and produce an overlap in \(I^t\) itself. So we assume that all the coefficients are in \(m\).

We pass to the ring \(A(u)\) and change the basis of \(IA(u)\) as follows:

\[x_{i_1} = y_{i_1} + uy_j; \quad x_k = y_k \quad \text{for} \quad k \neq i_1. \]

Then

\[IA(u) = (y_1, \ldots, y_n) \quad \text{and} \quad I^tA(u) = (y_{i_1}^{\alpha_1} \ldots y_{i_r}^{\alpha_r}, \ldots, y_{j_1}^{\beta_1} \ldots y_{j_s}^{\beta_s})A(u), \]

for

\[I^t \subseteq (y_{i_1}^{\alpha_1} \ldots y_{i_r}^{\alpha_r}, \ldots, y_{j_1}^{\beta_1} \ldots y_{j_s}^{\beta_s})A[u] + uI^tA[u]. \]

Now (*) gives

\[y_{i_1}^{\beta_1-1} y_{j_1}^{\beta_1} y_{i_2}^{\beta_2} \ldots y_{j_s}^{\beta_s} + (u-b) y_{j_1}^{\beta_1} \ldots y_{j_s}^{\beta_s} \in mI^tA(u). \]

Hence, if we substitute \(y_{i_1}^{\beta_1-1} y_{j_1}^{\beta_1} y_{i_2}^{\beta_2} \ldots y_{j_s}^{\beta_s}\) for the generator \(y_{j_1}^{\beta_1} \ldots y_{j_s}^{\beta_s}\) of \(I^tA(u)\), we have that \(I^tA(u)\) has an overlap of length 2.

Corollary. Let \(A\) be a quasi-local ring and \(I\) an ideal such that for some \(t > 1, v(I^t) = 2\). Then \(v(I^{t+k}) \leq 2\) for all \(k \geq 0\).

Proof. By Lemma 2 we may assume that \(I\) is finitely generated. \(I^tA(u)\) has 2 generators and, by Lemma 3, an overlap of length 2. Hence \(v(I^{t+k}A(u)) \leq 2\) and \(v(I^{t+k}) \leq 2\).

Proof of Proposition 1. If \(I\) is not principal, let \(t > 1\) be the least integer such that \(v(I^t) = 1\). Say \(I^t = (x_1^{\alpha_1} \ldots x_r^{\alpha_r})\), where the \(\alpha_i\) are positive integers such that \(\alpha_1 + \cdots + \alpha_r = t\) and the \(x_i\) are in \(I\). Since it is enough to show that some \(x_i\) is a zero divisor we may assume that \(I = (x_1, \ldots, x_r)\) and that \(x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_r^{\alpha_r}\) is one of the generators in a minimal basis for \(I^{t-1}\). Let \(z\) be another such generator. Then the relation \(x_1z = bx_1^{\alpha_1} \ldots \)
x^*_r, for some b in A, shows that x_1 is a zero divisor. To prove the second statement, suppose that $t > 1$ is a positive integer such that $\nu(l^t) = 2$ and $\nu(l^{t-1}) > 2$. By passing to the ring $A(u)$ we may assume that l^t has a minimal generating set of the form $x_1^a x_2^a \cdots x_r^a x_{r+1}^{a_{r+1}} \cdots x_s^{a_s}$ with $x_1, \ldots, x_s \in l$ and a_j positive integers such that $a_1 + \cdots + a_r = a_{r+1} + \cdots + a_s = t - 1$. Then there is a z in $l^{t-1}\setminus(x_1^a x_2^a \cdots x_r^a x_{r+1}^{a_{r+1}} \cdots x_s^{a_s})$. The relation

$$z x_1 = a x_1^a x_2^a \cdots x_r^a x_{r+1}^{a_{r+1}} \cdots x_s^{a_s} + b x_1^a x_2^a \cdots x_r^a x_{r+1}^{a_{r+1}} \cdots x_s^{a_s},$$

for some a, b in A, shows that x_1 is a zero divisor and that $l A(u)$ consists of zero divisors. Hence (cf. [3]) l consists of zero divisors.

The following example was shown to me by P. Eakin and W. Heinzer. (The reference [1] was supplied by the referee.) The example demonstrates that "very big" ideals in quasi-local domains can have powers generated by 3 elements. Let $n \in \{1, 2, \ldots, \infty\}$. Let S be any ring having an ideal J minimally generated by n elements. Let $R = S[[x^4, x^5, Jx^{11}]]$, where x is an indeterminate, and consider the ideal $l = (x^8, x^9, Jx^{11})R$. $\nu(l) = n + 2$, but $\nu(l^2) = 3$ since $l^2 = (x^8, x^9, x^{10})R$. Variation of the semigroup used as exponents for x leads to many such examples. Notice, however, that the domain R has dimension greater than one. What happens in the one-dimensional local case, except for some very special ideals (e.g. [2], [4]), is an open question. It is possible that the following generalization of Lemma 3 holds: if l is an ideal of a quasi-local ring A with $\nu(l^t) = k$ where $t > k$, then $\nu(l^{t+j}) \leq k$ for all $j \geq 0$. The combinatorial methods used above give a rather lengthy verification of this for $k = 3$, but this does not seem to be a good way to attack the general case.

* Added in proof. This conjecture has been proved by Eakin and Sathaye, Prestable ideals, J. Algebra (to appear). Also pertinent are the papers A note on the Hilbert function of a one-dimensional Cohen-Macaulay ring (preprint) by Herzog and Waldi, and Hilbert functions of graded algebras (preprint) by Stanley.

REFERENCES

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use