Properties of weak $\bar \theta$-refinable spaces
HTML articles powered by AMS MathViewer
- by J. C. Smith
- Proc. Amer. Math. Soc. 53 (1975), 511-517
- DOI: https://doi.org/10.1090/S0002-9939-1975-0380731-8
- PDF | Request permission
Abstract:
A space $X$ is called weak $\overline \theta$-refinable if every open cover of $X$ has a refinement $\bigcup \nolimits _{i = 1}^\infty {{\mathcal {G}_i}}$ satisfying (1) ${\mathcal {G}_i} = \{ {G_\alpha }:\alpha \epsilon {A_i}\}$ is an open collection for each $i$, (2) each $x\epsilon X$ has finite positive order with respect to some ${\mathcal {G}_i}$, (3) the open cover $\{ {G_i} = \bigcup {[{G_\alpha }:\alpha \epsilon } {A_i}]\} _{i = 1}^\infty$ is point finite. In this paper the author shows that the above property lies between the properties of $\theta$-refinable and weak $\theta$-refinable. The main result is the fact that if $X$ is countably metacompact and satisfies property $(\delta )$, every weak $\overline \theta$-cover of $X$ has a countable subcover. Results concerning paracompactness, metacompactness and the star-finite property are also obtained.References
- G. Aquaro, Point countable open coverings in countably compact spaces, General Topology and Its Relation to Modern Analysis and Algebra. II, Academia, Prague, 1966, pp. 39-41.
- C. E. Aull, A generalization of a theorem of Aquaro, Bull. Austral. Math. Soc. 9 (1973), 105β108. MR 372817, DOI 10.1017/S0004972700042933
- Harold R. Bennett, On quasi-developable spaces, General Topology and Appl. 1 (1971), no.Β 3, 253β262. MR 288725, DOI 10.1016/0016-660X(71)90096-1
- H. R. Bennett and D. J. Lutzer, A note on weak $\theta$-refinability, General Topology and Appl. 2 (1972), 49β54. MR 301697, DOI 10.1016/0016-660X(72)90035-9
- E. Michael, Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), 822β828. MR 87079, DOI 10.1090/S0002-9939-1957-0087079-9
- Kiiti Morita, Star-finite coverings and the star-finite property, Math. Japon. 1 (1948), 60β68. MR 26803
- J. C. Smith and L. L. Krajewski, Expandibility and collectionwise normality, Trans. Amer. Math. Soc. 160 (1971), 437β451. MR 284966, DOI 10.1090/S0002-9947-1971-0284966-5
- J. M. Worrell Jr. and H. H. Wicke, Characterizations of developable topological spaces, Canadian J. Math. 17 (1965), 820β830. MR 182945, DOI 10.4153/CJM-1965-080-3
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 511-517
- MSC: Primary 54D20
- DOI: https://doi.org/10.1090/S0002-9939-1975-0380731-8
- MathSciNet review: 0380731