Conjugate algebraic integers in an interval
HTML articles powered by AMS MathViewer
- by Veikko Ennola
- Proc. Amer. Math. Soc. 53 (1975), 259-261
- DOI: https://doi.org/10.1090/S0002-9939-1975-0382219-7
- PDF | Request permission
Abstract:
The following conjecture of R. M. Robinson is proved. If $\Delta$ is a real interval of length greater than $4$, then for any sufficiently large $n$ there exists an irreducible monic polynomial of degree $n$ with integer coefficients all of whose zeros lie in $\Delta$.References
- Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, Monografie Matematyczne, Tom 57, PWN—Polish Scientific Publishers, Warsaw, 1974. MR 0347767
- Raphael M. Robinson, Intervals containing infinitely many sets of conjugate algebraic integers, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 305–315. MR 0144892
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 259-261
- MSC: Primary 12A15
- DOI: https://doi.org/10.1090/S0002-9939-1975-0382219-7
- MathSciNet review: 0382219