SOME COMMUTATIVITY RESULTS FOR RINGS WITH TWO-VARIABLE CONSTRAINTS

H. E. BELL

Abstract. It is proved that an associative ring R has nil commutator ideal if for each $x, y \in R$, there is a polynomial $p(X) \in XZ[X]$ for which $xy - yp(x)$ is central. Two restrictions on the $p(X)$ which guarantee commutativity are established.

Let \mathcal{P} denote the set of those polynomials in two noncommuting indeterminates which have integer coefficients and constant term zero. We consider associative rings R with the property that for each ordered pair (x, y) of elements of R, there exists a polynomial $p(X, Y) \in \mathcal{P}$, depending on (x, y), for which
\[(1) \quad xy - p(x, y) \in Z,\]
where Z denotes the center of R.

Putcha and Yaqub [6] have shown that if each $p(X, Y)$ in (1) is a sum of terms each of degree at least two in both X and Y, then $R \subseteq Z$, and hence, by a long-standing theorem of Herstein [4], R has nil commutator ideal. Unless the $p(X, Y)$ in (1) are restricted in some fashion, R may be badly noncommutative—indeed the ring of 2×2 matrices over $GF(2)$ satisfies a condition of type (1), obtained by linearizing the identity $x^2 = x^8$. However, less severe restrictions than those imposed by Putcha and Yaqub, while not implying that any power of R is central, will still yield the result that R has nil commutator ideal; and this note deals with one such condition, together with some special cases of it which actually yield commutativity.

Letting $XZ[X]$ denote the ring of polynomials over the integers which have zero constant term, we state our major theorem as follows:

Theorem 1. Let R be a ring such that for each ordered pair (x, y) of elements of R there exists a polynomial $p(X) \in XZ[X]$, depending on (x, y), for which
\[(2) \quad xy - yp(x) \in Z.\]
Then the commutator ideal $C(R)$ is nil and the nilpotent elements of R form an ideal.

1. Proof of Theorem 1.

Lemma 1. Let R be a ring satisfying an identity $q(X) = 0$, where $q(X)$ is a polynomial in a finite number of noncommuting indeterminates, its coe-
ficients being integers with highest common factor 1. If there exists no prime p for which the ring of 2 \times 2 matrices over GF(p) satisfies q(X) = 0, then R has nil commutator ideal and the nilpotent elements of R form an ideal.

The proof of this lemma, which depends on a deep result of Amitsur on PI-rings, may be found in [2].

Lemma 2. Let R be a ring satisfying the hypothesis of Theorem 1 and having no nonzero divisors of zero; and let (x, y) be an arbitrary ordered pair of elements of R. If p(X) \in XZ[X] is such that xy - yp(x) \in Z, then xy^2 = y^2x or xy = yp(x).

Proof. Suppose that xy^2 \neq y^2x, and write
\[xy = yp(x) + z, \text{ where } z \in Z; \]
and let \(p_1(X) = XZ[X] \) be such that
\[x^2y - yp_1(x^2) \in Z. \]
Repeated substitution of (3) in (4) yields \(x(yp(x) + z) - yp_1(x^2) \in Z, \)
\((yp(x) + z)p(x) + xz - yp_1(x^2) \in Z, \) and finally
\[y((p(x))^2 - p_1(x^2)) + z(x + p(x)) \in Z. \]
If \((p(x))^2 - p_1(x^2) \neq 0, \) (5) implies that \(xy = yx, \) contrary to our supposition that \(xy^2 \neq y^2x; \) hence
\[(p(x))^2 - p_1(x^2) = 0 \text{ and } z(p(x) + x) \in Z, \]
so that \(z = 0 \text{ or } p(x) + x \in Z. \)
But if \(p(x) + x \in Z, \) then (3) yields \(xy - yp(x) = xy - y(p(x) + x) + yx \in Z, \)
implying that \(y \) commutes with \(xy + yx \) and, hence, that \(y^2 \) commutes with \(x; \) therefore \(z = 0 \) and (3) now shows that \(xy = yp(x). \)

Proof of Theorem 1. It will suffice to show that prime rings satisfying the hypothesis of Theorem 1 are commutative (see [2]). Accordingly, let \(R \) be such a prime ring; we first show that \(R \) has no nonzero divisors of zero.
Suppose that \(ab = 0, a \neq 0, \) and \(r \) is an arbitrary element of \(R. \) There exists \(q(X) \in XZ[X] \) for which \(b(ra) - (ra)q(b) \in Z; \) and since \(aq(b) = 0, \) we have \(b(ra) \in Z \) and thus \(sa(bra) = 0 = (bra)s \) for all \(s \in R. \) The primeness of \(R \) now implies that \(bra = 0 \) and hence that \(b = 0. \)
Assume that \(R \) is a noncommutative prime ring satisfying (2). The identity
\[(xy^2 - y^2x)(yx^2 - x^2y)(xy^2x - yx^2y) = 0 \]
is not satisfied by the ring of 2 \times 2 matrices over any field \(GF(p), \) as may be verified by substituting the matrices \[\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ for } x \text{ and } y \text{ respectively}; \]
thus, by Lemma 1, \(R \) cannot satisfy (7), and there must exist elements \(a, b \) of \(R \) for which \(ab^2 - b^2a, ba^2 - a^2b, \) and \(ab^2a - ba^2b \) are all nonzero.
If \(p(x) \in \mathbb{Z}[x] \) is such that \(ab = bp(a) \in \mathbb{Z} \), it follows from Lemma 2 that
\[
ab = bp(a).
\]

Now let \(s(x) \in \mathbb{Z}[x] \) satisfy
\[
bp(a) - p(a)s(b) \in \mathbb{Z}
\]
and apply the result of Lemma 2 to the ordered pair \((b, p(a))\). If \((p(a))^2 b = b(p(a))^2\), it follows from (8) that \(a^2 b = a(bp(a)) = b(p(a))^2 = (p(a))^2 b\), so that \(a^2 = (p(a))^2\) and \(a^2\) commutes with \(b\), contrary to the choice of \(a \) and \(b\). Therefore, by Lemma 2, \(bp(a) = p(a)s(b)\), which combines with (8) to give
\[
ab = p(a)s(b).
\]

Now it is immediate from Lemma 2 that \(R \) is an Ore domain and can be embedded in a division ring \(D \). In \(D \), (10) implies that \(b(s(b))^{-1} = a^{-1} p(a) \) commutes with both \(a \) and \(b\); and (8) written in the form \(ab = baa^{-1} p(a) \) shows that \(ab \) and \(ba \) commute, contrary to the original choice of \(a \) and \(b\). This contradiction completes the proof of Theorem 1.

2. Two commutativity theorems. In this section we single out two conditions of type (2) which imply commutativity.

Theorem 2. Let \(R \) be a ring such that for every ordered pair \((x, y)\) of elements of \(R \), there exists an integer \(n = n(x, y) \geq 1 \) for which \(xy = yx^n \). Then \(R \) is commutative.

Lemma 3. Any ring \(R \) satisfying the hypothesis of Theorem 2 has each of the following properties:

(a) Idempotents of \(R \) are central.

(b) \(R \) is a duo ring (i.e. one-sided ideals are two-sided); moreover \(ab = 0 \) implies \(ba = 0 \), so that there is no distinction between right and left zero divisors.

(c) Commutators in \(R \) are central.

(d) If \(a, b \in R \) are such that \(a(ab - ba) = b(ab - ba) = 0 \), then \(ab - ba = 0 \); similarly, if \(a(ab - ba)x = b(ab - ba)x = 0 \) for some \(x \in R \), then \((ab - ba)x = 0 \).

Proof. (a) If \(x \in R \) and \(e \) is idempotent, there exist positive integers \(m, n \) such that \(e(ex - exe) = (ex - exe) e^m \) and \(e(ex - exe) = (xe - exe) e^n \); hence \(ex - exe = xe - exe = 0 \).

(b) Let \(I \) be a right ideal of \(R \), \(a \in I \) and \(r \in R \); note that since \(ra = ar^n \) for some \(n \geq 1 \), \(ra \in I \). Thus all right ideals are two-sided, and a similar argument holds for left ideals.

Now let \(ab = 0 \). Since \(ba = ab^n \) for some \(n \geq 1 \), \(ba = 0 \) as well.

(c) By Theorem 1 the commutator ideal is nil and, hence, contained in the Jacobson radical \(J(R) \); therefore, it will suffice to show \(J(R) \subseteq \mathbb{Z} \). If we
assume the existence of an element \(a \in J(R) \setminus \mathbb{Z} \), then there is an element \(b \in R \) and integers \(m, n > 1 \) for which \(ab = ba^m \) and \(ba = ab^n \neq ab \). It follows that \(ab = ab^{n-1}a^{m-1} \), and because \(b^{n-1}a^{m-1} \in J(R) \), we now have \(ab = 0 \). Similarly, \(ba = 0 \) and we have a contradiction.

(d) Suppose \(a(ab - ba) = b(ab - ba) = 0 \); in view of (c), \(a^2b = ba^2 \) and \(b^2a = ab^2 \). Suppose \(ab - ba \neq 0 \) and let \(m, n > 1 \) be such that \(ab = ba^m \) and \(ba = ab^n \). Substituting each of these expressions into the other yields \(ab = ab^{n-1}a^{m-1} \) and \(ba = ba^m b^{n-1} \). If \(m \) and \(n \) are both even we thus get \(ab = ba = a^m b^n \); on the other hand, if one of \(n, m \) is odd, we have

\[
ab - ba = a b^{n-1}a^{m-1} - b a^{m-1}b^{n-1} = (ab - ba) a^{m-1} b^{n-1},
\]

which is zero since \((ab - ba)a = 0 \).

Finally, if \(x \in R \) and \(A \) is the annihilator of \(x \), we get the second statement of (d) by applying the preceding argument to the ring \(R/A \).

Proof of Theorem 2. It will suffice to prove commutativity under the additional hypothesis that \(R \) is subdirectly irreducible, in which case (since \(R \) is a duo ring) the set of zero divisors is precisely the annihilator of the unique minimal ideal \(S \) [1, Lemma 3].

The initial step is to show that zero divisors in \(R \) are central. Accordingly, suppose \(a \) is a noncentral zero divisor which fails to commute with some element \(b \in R \); and consider the case where \(b \) is also a zero divisor. Then by (d) of Lemma 2, we have one of \((ab - ba)a \) and \((ab - ba)b\) different from 0 and \((ab - ba)R\) is a nontrivial ideal; therefore if \(0 \neq s \in S \), there exists an element \(x \in R \) for which \(s = (ab - ba)x \). But \(0 = as = bs = a(ab - ba)x = b(ab - ba)x \), and from (d) of Lemma 2 we then get \((ab - ba)x = 0\), a contradiction. Now consider the case where \(b \) is not a zero divisor and let \(m, n > 1 \) be such that \(ab = ba^m \) and \(ba = ab^n \). Since \(ab \) is a zero divisor, \(ab \) and \(a \) commute, so that \(a(ab - ba) = (ab - ba)a = 0 \) and \(a^2 \) commutes with \(b \). If \(m \) is odd, repeating some of the computation in Lemma 2(d) shows that \(ab - ba = (ab - ba)a^{m-1}b^{n-1} = 0 \); on the other hand, if \(m \) is even, \(ab = a^m b, a^m = a, \) and \(a^{m-1} \) is a nonzero idempotent. Recalling that any nonzero central idempotent of a subdirectly irreducible ring must be a multiplicative identity element, we get a contradiction of the fact that \(a \) was a zero divisor. Therefore zero divisors of \(R \) are central.

Now suppose that \(R \) is not commutative and \(b \notin \mathbb{Z} \). There then exist \(a \in R \) not commuting with \(b \) and an integer \(j > 1 \) such that \(ba = ab^j \). Since \(a \) cannot be a zero divisor and since \(ab - ba = a(b - b^j) \) is a zero divisor (nilpotent, in fact), \(b - b^j \) must be a zero divisor, hence central. We have now arrived at a contradiction of Herstein’s well-known result that a ring \(R \) is commutative if for each \(x \in R \), there is an integer \(n(x) > 1 \) for which \(x - x^{n(x)} \in \mathbb{Z} \); and our proof is complete.

Theorem 3. Let \(R \) be a ring such that for every ordered pair \((x, y)\) of
elements of R, there is a polynomial $p(X) \in XZ[X]$ such that $xy = yxp(x)$. Then R is commutative.

Proof. Again applying the given condition to e, $ex - exe$, and $xe - exe$ shows that idempotents must be central. Also, since $x^2 = x^2p(x)$ for some $p(X) \in XZ[X]$, R is periodic by a result of Chacron [3]; therefore, R is either nil or contains a nonzero idempotent.

Suppose now that R is subdirectly irreducible. If R contains a nonzero idempotent, then it must have an identity; thus, for each $x \in R$ we have $x = xp(x)$, and R is commutative by the major theorem of [5]. On the other hand, if R is nil we have

$$xy = yxp(x) = yxp(x)q(y)p(x) = yxp(x)q(y)p(x)$$

for an appropriate element $r(X) \in XZ[X]$. In particular, $xy = yxyz$ for some element $z_1 \in R$; and, continuing inductively, for each positive integer n we get an element $z_n \in R$ for which $xy = y^nxyz$, so that $xy = 0$ and R is a zero ring. Therefore, if R is subdirectly irreducible, it is commutative; and the proof of Theorem 3 is finished.

The hypothesis of Theorem 3 cannot be weakened to the condition that $xy - yxp(x) \in Z$, as we see by noting that there exist noncommutative rings satisfying the identity $x^2 = 0$. However, it may be of some interest (but not enough to justify including the proof) to note that rings satisfying the weaker hypothesis are polynomial-identity rings—satisfying the identity $[[x, y], z]^2[x, y] = 0$.

REFERENCES

DEPARTMENT OF MATHEMATICS, BROCK UNIVERSITY, ST. CATHARINES, ONTARIO, CANADA