ABSTRACT. This paper is concerned with cyclotomic splitting fields for a real-valued irreducible character of a finite group. The fields considered are of the form $\mathbb{Q}(\zeta_m)$, where m is either an odd prime or a power of 2.

Let χ be an irreducible character of G and let ζ_m be a primitive mth root of unity. A famous theorem of Richard Brauer states that if m is the exponent of G, then $\mathbb{Q}(\zeta_m)$ is a splitting field for G. In a paper where he gives his second proof of this theorem, Brauer states the following proposition without proof [2, Theorem 3]: If χ is a real-valued character of G, then there exists an element of G whose order m is either an odd prime or a power of 2 such that $\mathbb{Q}(\zeta_m)$ splits χ. The examples given below show that this proposition is actually false. One weaker theorem is proved by B. Fein [3]. The Theorem given below is another attempt to substitute for Brauer's proposition.

Let k be a field of characteristic 0. The pair (G, χ) is said to be k-special if there exists a normal, cyclic, self-centralizing subgroup A of G and a faithful linear character λ of A such that $\chi = \lambda^G$ and G/A acts on λ as $\mathrm{Gal}(k(\lambda)/k(\lambda))$. Many questions on the Schur index reduce to considering such k-special pairs. Basic results on the Schur index can be found in Yamada [4].

Theorem. Suppose that χ is a real-valued character of G and G contains no elements of order $4n$ with n odd and $n > 1$. Then there exists an integer m dividing the exponent of G such that m is either an odd prime or 4, and such that $\mathbb{Q}(\zeta_m)$ splits χ.

Proof. To prove the Theorem, it is necessary to show that the Schur index $m_F(\chi)$ equals 1 for some field $F = \mathbb{Q}(\zeta_m)$ as specified above. Since χ is real-valued, then $m_Q(\chi) \leq 2$ by the Brauer-Speiser theorem. By the Brauer-Witt theorem, it suffices to consider $\mathbb{Q}(\chi)$-special pairs (G, χ) where G/A is a 2-group.

If G is a 2-group, then $m_Q(\chi) = 1$ if $\exp(G) = 2$. If $4|\exp(G)$, then m...
= 4 satisfies the conclusion of the Theorem. For the remainder of the proof, assume that there exists an odd prime \(q \) which divides \(|G|\). It will be shown that \(F = \mathbb{Q}(\epsilon_q) \) splits \(\chi \).

Assume \(m_{\mathbb{Q}}(\chi) = 2 \). Let \(p \) be a prime such that \(m_{\mathbb{Q}_p}(\chi) = 2 \). Let \(H \) be a subgroup of \(G \) such that \(A \subseteq H \) and \(H/A \) acts on \(\lambda \) as \(\text{Gal}\left(\mathbb{Q}_p(\lambda) / \mathbb{Q}_p(\chi)\right) \). Set \(\phi = \lambda^H \). Then \(m_{\mathbb{Q}_p}(\phi) = m_{\mathbb{Q}_p}(\chi) = 2 \). Suppose \(H \) contains no element of order 4. Then a Sylow 2-subgroup of \(G \) is elementary abelian and \(A \) has a complement \(T \) in \(H \). Thus \(\phi(1) = |T| \) and \((\phi, (1_T)^H) = 1 \), so \(m_{\mathbb{Q}_p}(\phi) = 1 \), which is a contradiction. Therefore \(H \) contains an element of order 4. Let \(x \) be an element of order \(q \) in \(A \). Since \(G \) contains no element of order \(4q \), then \(x \notin Z(H) \). Since \(\lambda \) is faithful and \(H/A \) acts on \(\lambda \) as \(\text{Gal}\left(\mathbb{Q}_p(\lambda) / \mathbb{Q}_p(\chi)\right) \), then \(2|\mathbb{Q}_p(\chi, \epsilon_q) : \mathbb{Q}_p| \). Thus, if \(k = \mathbb{Q}_p(\epsilon_q) \), then \(m_k(\chi) = 1 \). Therefore \(m_F(\chi) = 1 \) for \(F = \mathbb{Q}(\epsilon_q) \).

Example (1). Define \(G = \langle a, b, c, x, y, w \rangle \) with the following relations:

\[
a^5 = b^{11} = c^{43} = z^2 = x^4 = w^{42} = 1, \quad y^{10} = z,
\]

\[
[x, w] = z, \quad x^{-1}ax = a^2, \quad y^{-1}by = b^2, \quad w^{-1}cw = c^3.
\]

Then \(\exp(G) = 2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 43 \). Let \(A = \langle a, b, c, z \rangle \) and let \(\lambda \) be a faithful linear character of \(A \). Then \(A \triangleleft G \) and \(\chi = \lambda^G \) is a rational-valued irreducible character of \(G \). The \(p \)-local Schur indices of \(\chi \) can be calculated by using either the formula of Berman [1, §4] or Yamada [4, Chapter 4]. The index \(m_{\mathbb{Q}_p}(\chi) = 2 \) exactly when \(p = 5, 11, 43, \) and \(\infty \). Furthermore, if \(m \in \{4, 3, 5, 7, 11, 43\} \), there exists \(p \in \{5, 11, 43, \infty\} \) such that \(|\mathbb{Q}_p(\epsilon_m) : \mathbb{Q}_p| \) is odd. Thus \(\mathbb{Q}(\epsilon_m) \) fails to split \(\chi \) for each such \(m \). Hence Brauer's proposition is false.

Example (2). Another example shows that if \(\exp(G) \) is replaced by \(|G|\), then the proposition is still false. Define \(G = \langle a, b, c, x, y, w \rangle \) with the following relations:

\[
a^{17} = b^{31} = c^{103} = z^2 = x^2 = y^2 = 1, \quad w^2 = z,
\]

\[
[x, y] = z, \quad x^{-1}ax = a^{-1}, \quad y^{-1}by = b^{-1}, \quad w^{-1}cw = c^{-1}.
\]

Then \(|G| = 2^4 \cdot 17 \cdot 31 \cdot 103 \). Set \(A = \langle a, b, c, z \rangle \), \(\lambda \) a faithful character of \(A \), and \(\chi = \lambda^G \). Then \(\chi \) is real-valued and has local Schur index 2 at \(17, 31, \) and \(103 \). Furthermore, if \(m \in \{16, 17, 31, 103\} \), there exists \(p \in \{17, 31, 103\} \) such that \(|\mathbb{Q}_p(\epsilon_m) : \mathbb{Q}_p| \) is odd. Therefore \(\mathbb{Q}(\epsilon_m) \) fails to split \(\chi \) for each \(m \).

The following result shows that this situation cannot happen if \(\chi \) is rational-valued.

Proposition. Let \(\chi \) be an irreducible character of \(G \) such that \(\mathbb{Q}(\chi) \) is an extension of \(\mathbb{Q} \) of odd degree. If \(|G| = 2^n, n \text{ odd}\), then \(\mathbb{Q}(\epsilon_n) \) splits \(\chi \).
Proof. By the Brauer-Speiser theorem, $m_Q(\chi) \leq 2$. By the Brauer-Witt theorem, it suffices to consider $Q(\chi)$-special pairs (G, χ) where G/A is a 2-group. Since $Q(\chi)/Q$ has odd degree, G/A is isomorphic to a Sylow 2-subgroup of $\text{Gal}(Q(\lambda)/Q)$.

Suppose $m_Q(\chi) = 2$. Then χ cannot be linear, so $G \neq A$. Hence $2 \nmid \vert G : A \vert$. Let T be a Sylow 2-subgroup of G. If $A \cap T = \{1\}$, then $\chi(1) = \vert G : A \vert = \vert T \vert$ and $(\chi, (1_T)^G) = 1$. In that case, $m_Q(\chi) = 1$, which is a contradiction. Hence $2 \nmid \vert A \vert$ so $4 \nmid \vert G \vert$ and $c \geq 2$. Thus $2 \nmid \vert Q_p(\epsilon_2 c) : Q_p \vert$ for $p = 2, \infty$. In particular, $Q_2(\epsilon_2 c)$ and $Q_\infty(\epsilon_2 c)$ each split χ.

Let p be an odd prime with $p - 1 = 2^a b$, b odd. Suppose $m_{Q_p}(\chi) = 2$. Then $p \nmid \vert A \vert$. Since λ is faithful and G/A is isomorphic to a Sylow 2-subgroup of $\text{Gal}(Q(\lambda)/Q)$, $2^a \nmid \vert G : A \vert$. Therefore, $c \geq a + 1$. Hence, $2 \nmid \vert Q_p(\epsilon_2 c) : Q_p \vert$ so $Q_p(\epsilon_2 c)$ splits χ.

Therefore $Q(\epsilon_2 c)$ splits χ.

REFERENCES