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COMPLETELY ADDITIVE MEASURE AND INTEGRATION

ALAN McK.SHORB

ABSTRACT.   This paper is an extension of the efforts to cast the

theory of measure and integration into the framework of nonstandard an-

alysis, begun by Robinson 17, particularly Theorem 3.5-2], and continued

by Bernstein and Wattenberg, Loeb and llenson.   The principal result,

Theorem 3, is:   There exists a completely additive measure function de-

fined on all subsets of R  which nearly agrees with Lebesgue measure

and is nearly translation invariant on bounded sets.   Its integral is de-

fined for all sets and functions, and nearly agrees with the Lebesgue in-

tegral.

1.   Introduction.   The infinitely small and infinitely large numbers of

Robinson's nonstandard analysis  [7]  suggest that one could develop a theory

of measure and integration which avoids some of the troublesome features of

Lebesgue integration, such as nonempty sets with zero measures and non-

measurable sets.   This paper is an extension of the work already done in this

direction  ([3], [6], [5], [2] and [l]).

The ultimate theory should revolve around a nonstandard-valued measure

function which enjoys the following properties:

(1) Every nonempty set has a positive, nonstandard measure, which

nearly agrees with Lebesgue measure whenever the latter exists.

(2) The integral of aray function over any set is defined and is computed

by multiplying the measure of each point times the value of the function and

summing over all points in the set.   This integral nearly agrees with the

Lebesgue integral whenever the latter exists.

(3) The measure is translation invariant.

(4) The measure is completely additive in the sense that the measure

of the union of any disjoint family of sets is the sum of the measures of the

sets in that family.

The three theorems of this paper are concerned with developing such a

measure which enjoys the last three of these properties.

We assume a knowledge of measure and integration as found in [8], and

a knowledge of nonstandard analysis as found in Chapters 2 and 3 of [7].

We use a notation scheme for sums and unions illustrated by:
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iX, %, p.)  will denote a cr-finite measure space where  X = UXl: (l < /' < oo),

piX1) < oo  and  X1' C X' + 1.   If A C X, we denote  A n X* by  A1'.   We also as-

sume that  'o  separates points of  X  in the sense that if a 4 b e X, then

there is a set  A e f> with aeA,   b 4 A.  We will let  (R, 'd, A)  denote the

reals with Lebesgue measure.   All functions considered are finite valued.

If A   is a       finite set, we denote by  #A  the number of elements in  A.

A sample on the standard set  A   is a       finite set A C S C    A.

Fact.   For any standard set  A  there is a sample.  A presample on A  is

a finite subset of A  used to construct a sample on  A.   If n €    N,   N    =r 77

i772   e   */V|0   < 777   < raj.

Let  A'  be a    R valued set function on  f (P).  We shall say that  A'

nearly agrees with  A if for every  A  e 75  with   A(A)  defined,   A (A) ~ A(A).

A'  is nearly translation invariant on A  if for every  r e R, A'(A) ~ A'(A + r).

2.   Integration.   Let A C X.   A partition of A  is a disjoint family f  of

subsets of A   such that U/ = A.   Note that every simple function determines

a partition.  A pointed partition of A  is an ordered pair if, S)  such that  J

is a partition of A  and  5  is a subset of A  which meets each member of f

in exactly one point.   All partitions in this paper will be assumed indexed.

If (/, S) is a pointed partition, and   P. e f, we let  s. denote the unique

member of   P. IX S.   For any set  B C A, we let  /(B) = \l < j < l\s . e B\.   A

pointed partition  (j , S ) is a refinement of the pointed partition  if, S) if

f    is a refinement of f  and if 5   2 5.   f  is called measurable if f C b.

Theorem 1.    Let  (X, lo, /^)   fee a o -finite measure space.   Then there

exists an integer Me    N - N and a       finite measurable pointed partition

if, S)  of XM  such that:

(   a)   S is a sample on  X   .

Ch)   For every A e %  *AM = \jp.: (/ e ii*A)).

(   c)   // / is integrable over A,

Sjdu^zZfis)- *piPj:ijelCA)).

Proof.    This follows from

Lemma 1 (Enabling lemma).   Let  e > 0.   Let  a., . • ., a    e X, A  , . . ., A

e fy  and f , ..., f    be measurable functions.   Then there exist a natural

number M  and a finite measurable pointed partition if, S)  of X     such that:

(a) a. e S, 1 <i <n.

(b) Af = l>.: (; e 1(A)).
(c) // /.  is integrable over A., then
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Proof.   We may assume that each  /. > 0 by considering positive and

negative parts. We may assume that /   is integrable over all of X by mul-

tiplying it by  y(A .).  We may assume the  a.'s are separated by adding new

A.'s.
i M

Let  / be the sum of the  /Vs.  Choose  AI  so that each  a. £ X     and

(i) \lA!dv--L^di\<i/5'

Choose   B C X'    so that   / is bounded on  B,   a. £ B, and

(2) L^,d^~Lfdi1 <eh-

On  B, approximate each  /   from below by a simple function /    such that

(3) piBXffx) - fnAx)) < f/5     for all x £ B,

(A) fB(f[-ff)dp<(/5.

The partition of  X"   will be the common refinement of the partitions deter-

mined by the  f's and the  y(A .)'s.  Condition  (b) is satisfied.  If  P.CB,

choose  s. in any manner, as long as  (a)  is satisfied.   If  P . C X    - B,

choose  s . so that
i

(5) f(s{) - f/5 < min</(x)|x £ P.\.

Then equations (1)—(5) assure that condition  (c ) is satisfied, and the lemma

is proved.

Proof of theorem.   Let  Q(a, M)  be the relation where  a = (A, /, a, e),

as in the lemma, and where   X     has a partition as in the lemma.   Then   0 is

concurrent, and the theorem is proved.

Corollary.    For any positive infinitesimal (, there is an integer M £    N

with a       finite measurable pointed partition satisfying (   a), (   b) and (c).

Proof.   The following relation is concurrent. Q (a, fi), where a =

(A,  f,   a)  as  before,   and    f3: R+   —A/   such  that  if   /3(f)   --   M,  then

0((A, f, a, c), AI).  The corollary is proved.

3.   Translation invariance.   The pointed partition (i, S)  of X     ob-

tained in Theorem 1 allows us to define a measure function p    on  X which

nearly agrees with p  in bodi measure and integration.  We first define  p   on

all of *9(X), and  then  for   A   e   9(X)   identify   p'(A)   with   p'(*A).    For
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A e *f(X) we let /(A) = 2*p(P): ij e 1(A)). J is seen to be a * finitely

additive set function, and if we let / be the function which is identically 1

on A e _8, condition ( c) of Theorem 1 states that p' agrees with p. Ii we

define

£/^' = £/(s>(P/>:(/e/(^

for every  A C X and every /: A —» R, condition  (   c)  states that p    nearly

agrees with  p in integration.

In the special case of (P, &, A), we are not yet assured that the measure

A   as constructed in Theorem 1 is nearly translation invariant on bounded

sets.  The next theorem shows it can be.

Theorem 2.    Let (P, &, A)   be Lebesgue measure.   Then  M, f, and S  of

Theorem 1 can be chosen so that  A    is nearly translation  invariant on

bounded sets.

Proof.   Let AI, B   and  if , S')  be as assured in the lemma, with the

additional property that all members of  ./     with zero measure are subsets of

D = [-AI, Al] - B, and that  A(D)  is small.   The problem is to choose a refine-

ment if, S)  so that  A   as defined above is almost translation invariant on a

few given subsets of  [— M, Al], without losing the properties assured by the

lemma.  The solution is to mimic the construction of  [3], obtaining a pre-

sample  SXS'   on  L-M, Al]  such that if we define  A<-(A) = 2M-#(A Pi S)/#S,

then   XjD) is very small,   \iP)/\JP)  is almost   1  for every   B X P e f',

and   A„  is almost translation invariant on the given subsets.   We now need to

encase  S in a refinement of  f .  Encase the new members of S which be-

long to  D in singletons.   For each   B X P e f, it #(P C\ S) = q, break  P

into  q  sets, each with the same A measure, and each with one point of S.

Now we have a partition where all except a few of the sets have nearly the

same  A and  A^.  measure, so  A    as defined above is almost translation in-

variant.  Since we have chosen the new partition judiciously, we have not

lost any of the properties  (a)—(c)  inherited from the lemma.   The theorem is

proved.

4.   Complete additivity.   Let A   be a standard set.   A counting function

on  A  is an internal function  C:    fiA) —>    N such that:  (a)  For every  aeA,

Ci\*a\) = 1;  (b) if B  and  D  are disjoint subsets of  A,  then  Ci*iB u D)) =

C(   B) + Ci' D);  (c) for every  B C A, if  C(   B) = ra, there is an internal func-

tion  E[B]: N   -A—* *B   such that  B C ran(E[B]).   We identify   C(B) with
77 — J

Ci   B), and note that  E[B]   "enumerates" the elements of  B, and   CiB)  is

the result of that "count".  If  S is a sample on  A, define the function  C\S]:

*fiA) - *N by  C[S]iB) = #(B n  S).



COMPLETELY ADDITIVE MEASURE AND INTEGRATION 457

Lemma 2.   C[S]  is a counting function.

Proof.   Clear.

We now define the concept of a completely additive set function o.   In-

tuitively speaking, for any pairwise disjoint family  A   of subsets of A, we

would like to have odJ'A) = loiB): (B e j).   More formally, for any standard

set A, a completely additive set function on A  is a function  a:     9(A)—>    R,

along with a counting function  C on  9(A)  such that for every pairwise dis-

joint family,  J, of subsets of A,

(d) oOJ*?) = £ oiEmU)): (1 < i < CCF)).

Theorem 3.    There is a completely additive measure  X   on  R  which

nearly agrees with  X in measure and integration and which is nearly trans-

lation invariant on bounded sets.

(Note that in the statement of this theorem in  [9J,  "translation invari-

ant" should read "nearly translation invariant".)

Proof.   This follows from Lemma 3 below.  We first give some defini-

tions.

Let  S be a sample on a standard set  X.   Let  cf>: S —>    R.   Define olcf>]:

*9(A) ^*Rby

a[cb](B) =X <Ms): (seS n 3).

As above for B e 9(A), we identify oicfAiB) with o[ch](* B).   If /: B -> *R

we define

/ fdcA<f>] = £ cb(s)f(s): (seHn S).

If f and B  are standard, we identify f„fdo[(p] with   f       fdoicb].  Let D be

the class of pairwise disjoint families of subsets of  A, and let  S be a sam-

ple on D.  Let S = jB e *9(A)\B = 0 or B e J e S and B n S 4 0|.   Then

« is a sample on  J (A).   For suppose  B C A.   If B = 0,     B £ o by designa-

tion. If A e B, then A e *B n S and   *B e S*B! e S.  Therefore *B e S.

Also,  S has only       finitely many members, and each of them has only

finitely many members which meet  S, so S is       finite.

Lemma 3.   Lt?; S,  cf, and o be as described above.   Then ff[ci]  is a

completely additive function on  A  with associated counting function  C[S],

Proof.   Let ? e D.   Let  B = U'F.  Let n = #(S   n *J) = C[S](.CF),   and

let  F[.f]  be the associated enumerating function.  Now,  S n *B = 5  Pi

(UeL'lKz'): (1 < i < ra)).   For suppose s e S n*B.   Then s e S n D for some

D e    .j".  Therefore  0 £ o, so  D = E[J"](f)  for some   !<*'<«.   The converse
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is clear.   Furthermore, since J   is pairwise disjoint, so is  ran(EL.i"]).   There-

fore

d<f>](*B) = £ d>is):(s e (\JiS n £[J](,)):(l < i < »)))

= Z&>(s): iseSn BLfKi))): (1 < i < n),

(because  ran (£[!?]) is disjoint)

= Z°t<r>KE[3:](z')):(l<f<«).

The lemma is proved.

Proof of theorem.   Let  if, S) he as in Theorem 2.  Define   cbis .) =
i

piP ).   Then o\<p] = A ,  and the theorem follows from Theorem 2 and Lemma 3.

Now  A   is nearly translation invariant on bounded sets.   We would ex-

pect  A   to be nearly translation invariant on any set with a finite A   measure.

We have not been able to show this.  More generally, the above theorems do

not tell us about the relative size of the translate of a set  A   if   A'(A)  is

either infinite or infinitesimal.   We shall say that  A'  is proportionally trans-

lation invariant it for every set  A  with   A'(A) / 0, A'(B)/A'(A) ~ 1  for any

translate   B  of  A.

Conjecture.   A   of the theorems can be assured of being proportionally

translation invariant.

The concept of near translation invariance can be generalized.   Let

(X,  a, p)  be a measure space, and let  II be a group of permutations of  X

such that for every  A e f>  and every a e 11 we have  piA) = piaiA)).  Then

we shall say that p is  W-invariant.   If p    is a completely additive measure

on   X which agrees with  p, we say  p    is nearly W-invariant if for every

a £ II and A C X,  piA) ~ p'iaiA)).

False conjecture.    If p is  Il-invariant then there is a completely addi-

tive  p   which agrees with  p and is nearly   11-invariant.

Proof.   Let  X = P3  with  p Lebesgue measure, and let  11  be the group

of rigid motions of  R  .  p is   11-invariant.   Let A  be the example of Haus-

dorff [4, p. 469]  which is at the same time 1/2  and   1/3 of the unit sphere

by means of rigid rotations.   If p    existed as in the conjecture, we would

have that   211/3 ~ piA) ~ 411/9.
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