On a problem of J. L. Taylor
HTML articles powered by AMS MathViewer
- by Keiji Izuchi
- Proc. Amer. Math. Soc. 53 (1975), 347-352
- DOI: https://doi.org/10.1090/S0002-9939-1975-0382998-9
- PDF | Request permission
Abstract:
Let $S$ be the structure semigroup of a measure algebra $M(G)$ and $K$ be the union of all maximal groups of $S$. Taylor proposed the following problem: Are there L. C. A. groups $G$ with nontrivial measures concentrated on $K$? The purpose of this paper is to give a positive solution to this problem.References
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Joseph L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc. 119 (1965), 150โ166. MR 185465, DOI 10.1090/S0002-9947-1965-0185465-9
- Joseph L. Taylor, $L$-subalgebras of $M(G)$, Trans. Amer. Math. Soc. 135 (1969), 105โ113. MR 233149, DOI 10.1090/S0002-9947-1969-0233149-4
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 347-352
- MSC: Primary 43A10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0382998-9
- MathSciNet review: 0382998