Primary ideals in rings of analytic functions
HTML articles powered by AMS MathViewer
- by Norman L. Alling
- Proc. Amer. Math. Soc. 53 (1975), 423-427
- DOI: https://doi.org/10.1090/S0002-9939-1975-0383082-0
- PDF | Request permission
Abstract:
Primary ideals in the ring of all analytic functions on a noncompact Riemann surface are analyzed with the aid of classical valuation theory.References
- Norman L. Alling, The valuation theory of meromorphic function fields, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 8–29. MR 0236404
- Otto Endler, Valuation theory, Universitext, Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899–12 April 1971). MR 0357379
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- R. Douglas Williams, Primary ideals in rings of analytic functions, Trans. Amer. Math. Soc. 177 (1973), 37–49. MR 320760, DOI 10.1090/S0002-9947-1973-0320760-6
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 423-427
- MSC: Primary 46J15; Secondary 12J20
- DOI: https://doi.org/10.1090/S0002-9939-1975-0383082-0
- MathSciNet review: 0383082