Oscillations of bases for the natural numbers
HTML articles powered by AMS MathViewer
- by Paul Erdős and Melvyn B. Nathanson
- Proc. Amer. Math. Soc. 53 (1975), 253-258
- DOI: https://doi.org/10.1090/S0002-9939-1975-0384739-8
- PDF | Request permission
Abstract:
Let $A$ be a set of positive integers. Then $A$ is a basis if every sufficiently large integer $n$ can be written in the form $n = {a_i} + {a_j}$ with ${a_i},\;{a_j}\epsilon A$. Otherwise, $A$ is a nonbasis. In this paper we construct sets which oscillate from basis to nonbasis to basis or from nonbasis to basis to nonbasis under finite perturbations of the sets.References
- Paul Erdős and Melvyn B. Nathanson, Maximal asymptotic nonbases, Proc. Amer. Math. Soc. 48 (1975), 57–60. MR 357363, DOI 10.1090/S0002-9939-1975-0357363-0
- Erich Härtter, Ein Beitrag zur Theorie der Minimalbasen, J. Reine Angew. Math. 196 (1956), 170–204 (German). MR 86086, DOI 10.1515/crll.1956.196.170
- Melvyn B. Nathanson, Minimal bases and maximal nonbases in additive number theory, J. Number Theory 6 (1974), 324–333. MR 347764, DOI 10.1016/0022-314X(74)90028-6
- Alfred Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. I, II, J. Reine Angew. Math. 194 (1955), 40–65, 111–140 (German). MR 75228, DOI 10.1515/crll.1955.194.40
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 253-258
- MSC: Primary 10L05
- DOI: https://doi.org/10.1090/S0002-9939-1975-0384739-8
- MathSciNet review: 0384739