Measurability of norm proved by Haar functions
HTML articles powered by AMS MathViewer
- by H. C. Finlayson
- Proc. Amer. Math. Soc. 53 (1975), 334-336
- DOI: https://doi.org/10.1090/S0002-9939-1975-0385059-8
- PDF | Request permission
Abstract:
A proof is given of the measurability of the supremum norm on Wiener space.References
- Z. Ciesielski, Hölder conditions for realizations of Gaussian processes, Trans. Amer. Math. Soc. 99 (1961), 403–413. MR 132591, DOI 10.1090/S0002-9947-1961-0132591-2
- William Feller, An Introduction to Probability Theory and Its Applications. Vol. I, John Wiley & Sons, Inc., New York, N.Y., 1950. MR 0038583
- H. C. Finlayson, Approximation of Wiener integrals of functionals continuous in the uniform topology, Pacific J. Math. 34 (1970), 61–71. MR 412699
- Leonard Gross, Measurable functions on Hilbert space, Trans. Amer. Math. Soc. 105 (1962), 372–390. MR 147606, DOI 10.1090/S0002-9947-1962-0147606-6
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 334-336
- MSC: Primary 28A40
- DOI: https://doi.org/10.1090/S0002-9939-1975-0385059-8
- MathSciNet review: 0385059