Sequential weak convergence in the bidual of a Banach lattice
HTML articles powered by AMS MathViewer
- by John L. B. Gamlen
- Proc. Amer. Math. Soc. 53 (1975), 375-378
- DOI: https://doi.org/10.1090/S0002-9939-1975-0385511-5
- PDF | Request permission
Abstract:
Let $X$ be a Banach lattice with separable dual. Then the bidual $X''$ is the closure of $X$ under sequential monotone weak convergence.References
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164. MR 115069, DOI 10.4064/sm-17-2-151-164
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Robert C. James, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174–177. MR 44024, DOI 10.1073/pnas.37.3.174
- Shizuo Kakutani, Concrete representation of abstract $(L)$-spaces and the mean ergodic theorem, Ann. of Math. (2) 42 (1941), 523–537. MR 4095, DOI 10.2307/1968915
- Isaac Namioka, Partially ordered linear topological spaces, Mem. Amer. Math. Soc. 24 (1957), 50. MR 94681
- Tôzirô Ogasawara, Theory of vector lattices. I, J. Sci. Hiroshima Univ. Ser. A 12 (1942), 37–100 (Japanese). MR 29089
- Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. MR 0227731
- L. Tzafriri, Reflexivity in Banach lattices and their subspaces, J. Functional Analysis 10 (1972), 1–18. MR 0358303, DOI 10.1016/0022-1236(72)90054-7 A. C. Zaanen, and W. A. J. Luxemburg, Riesz spaces, North-Holland, London, 1971.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 375-378
- MSC: Primary 46A40
- DOI: https://doi.org/10.1090/S0002-9939-1975-0385511-5
- MathSciNet review: 0385511