On the characterization of Souslin and Borel sets
HTML articles powered by AMS MathViewer
- by R.-D. Reiss
- Proc. Amer. Math. Soc. 53 (1975), 530-534
- DOI: https://doi.org/10.1090/S0002-9939-1975-0385827-2
- PDF | Request permission
Abstract:
Let $\mathfrak {X}$ be an arbitrary family of sets in the basic set $X$. In this paper Souslin-$\mathfrak {X}$ sets are represented as projections on $X$ of certain $\sigma \delta$-sets in the cartesian product space of $X$ and the Baire space (or $X$ and the real line). For $L{\text { - }}\mathfrak {X}$ sets (i.e. Souslin sets defined with disjoint unions; ensembles d’unicité) injective projections are considered. The results also apply to Borel-$\mathfrak {X}$ sets since the system of $L{\text { - }}\mathfrak {X}$ sets includes the Borel-$\mathfrak {X}$ sets under suitable conditions.References
- Gustave Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953/54), 131–295 (1955). MR 80760 H. Hahn, Reelle Funktionen. Teil 1, Academie Verlagsgesellschaft, Leipzig, 1932; reprint, Chelsea, New York, 1948. F. Hausdorff, Mengenlehre, 2nd ed., de Gruyter, Berlin, 1927; English transl., Chelsea, New York, 1957. MR 19, 111. K. Kunugui, La théorie des ensembles analytiques et les espaces abstraits, J. Fac. Sci. Hokkaido Imp. Univ. (1) 4 (1935), 1-40.
- Kazimierz Kuratowski and Andrzej Mostowski, Teoria mnogosci, Monografie Matematyczne, Tom XXVII, Polskie Towarzystwo Matematyczne, Warszawa-Wrocław, 1952 (Polish). MR 0054684 W. Sierpiński, Le théorème d’unicité de M. Lusin pour les espaces abstraits, Fund. Math. 21 (1933), 250-275.
- Maurice Sion, Continuous images of Borel sets, Proc. Amer. Math. Soc. 12 (1961), 385–391. MR 131508, DOI 10.1090/S0002-9939-1961-0131508-X
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 530-534
- MSC: Primary 54H05; Secondary 04A15
- DOI: https://doi.org/10.1090/S0002-9939-1975-0385827-2
- MathSciNet review: 0385827