INVERSE CLUSTER SETS

T. R. HAMLETT AND PAUL E. LONG

ABSTRACT. For a function \(f: X \to Y \), the cluster set of \(f \) at \(x \in X \) is the set of all \(y \in Y \) such that there exists a filter \(J \) on \(X \) converging to \(x \) and the filter generated by \(f(J) \) converges to \(y \). The inverse cluster set of \(f \) at \(y \in Y \) is the set of all \(x \in X \) such that \(y \) belongs to the cluster set of \(f \) at \(x \). General properties of inverse cluster sets are proved, including a necessary and sufficient condition for continuity. Necessary and sufficient conditions for functions to have a closed graph in terms of inverse cluster sets are also given. Finally, a known theorem giving a condition as to when a connected function is also a connectivity function is generalized and further investigated in terms of inverse cluster sets.

1. Introduction. The idea of defining an inverse cluster set arises from the concept of a cluster set as found in [7] and [4] as well as elsewhere. The cluster set of a function \(f: X \to Y \) at \(x \in X \) is the set of all \(y \in Y \) such that there exists a filter \(\mathcal{F} \) on \(X \) converging to \(x \) and the filter generated by \(f(\mathcal{F}) \) converges to \(y \). We define the inverse cluster set of \(f \) at \(y \in Y \) to be the set of all \(x \in X \) such that \(y \) belongs to the cluster set of \(f \) at \(x \).

After discussing some general properties of inverse cluster sets, their relationship to functions with closed graphs as well as connectedness is investigated.

Throughout, we use \(\mathcal{N}(x) \) to denote the neighborhood system at the point \(x \). If \(f: X \to Y \) is a function and \(\mathcal{F} \) is a filter on \(X \), the filterbase \(f(\mathcal{F}) \) generates a filter which we also denote by \(f(\mathcal{F}) \). The graph of a function \(f: X \to Y \) is denoted by \(G(f) = \{(x, f(x)) : x \in X\} \). For the set \(A \), \(\text{Cl}(A) \) denotes the closure of \(A \).

2. Basic properties of inverse cluster sets.

2.1. Definition [4]. Let \(f: X \to Y \) be any function. Then \(y \in Y \) is an element of the cluster set of \(f \) at \(x \), denoted by \(C(f; x) \), if there exists a filter \(\mathcal{F} \) on \(X \) such that \(\mathcal{F} \) converges to \(x \) and \(f(\mathcal{F}) \) converges to \(y \).

2.2. Definition. Let \(f: X \to Y \) be any function. The inverse cluster set of \(f \) at \(y \in Y \), denoted by \(C^{-1}(f; y) \), is the set of all \(x \in X \) such that \(y \in C(f; x) \).

2.3. Theorem. Let \(f: X \to Y \) be a function. Then the following are equivalent:

Received by the editors December 9, 1974.

(1) \(x \in \mathcal{C}^{-1}(f; y) \).
(2) \(x \in \bigcap \{ \text{Cl}(f^{-1}(V)); V \in \mathcal{N}(y) \} \).
(3) The filterbase \(f^{-1}(\mathcal{N}(y)) \) accumulates to \(x \).
(4) \(y \in \bigcap \{ \text{Cl}(f(U)); U \in \mathcal{N}(x) \} \).
(5) \(f(\mathcal{N}(x)) \) accumulates to \(y \).
(6) There exists a net \(x_a \to x \) such that \(f(x_a) \to y \).

Proof. Theorem 2.2 of [4] states that \(y \in \mathcal{C}(f; x) \) if and only if \(f^{-1}(\mathcal{N}(y)) \) accumulates at \(x \) if and only if \(y \in \bigcap \{ \text{Cl}(f(U)); U \in \mathcal{N}(x) \} \). The conditions of the theorem then follow in a straightforward manner.

2.4. Corollary. For \(f: X \to Y \), the set \(\mathcal{C}^{-1}(f; y) \) is closed for every \(y \in Y \).

2.5. Corollary. If \(f: X \to Y \) is a given function, then \(\text{Cl}(f^{-1}(y)) \subseteq \mathcal{C}^{-1}(f; y) \) for every \(y \in Y \).

Proof. Condition (2) of Theorem 2.3.

2.6. Theorem. Let \(X \) be compact and \(f: X \to Y \) a function such that \(\text{Cl}(f(X)) = Y \). Then \(\mathcal{C}^{-1}(f; y) \neq \emptyset \) for every \(y \in Y \).

Proof. For each \(y \in Y \), \(f^{-1}(\mathcal{N}(y)) \) is a filterbase on the compact \(X \), hence must have an accumulation point.

Evidently, the set \(\mathcal{C}^{-1}(f; y) \) need not be connected even for continuous functions. In our efforts to find a condition under which \(\mathcal{C}^{-1}(f; y) \) is connected, we use the following definition:

2.7. Definition. The function \(f: X \to Y \) is inverse connected if \(f^{-1}(C) \) is connected for every connected \(C \subseteq Y \).

A sufficient condition for \(f: X \to Y \) to be inverse connected, for example, is that \(f \) be closed and monotone [6, Theorem 2].

2.8. Theorem. Let \(f: X \to Y \) be inverse connected, \(\text{Cl}(f(X)) = Y \), \(X \) compact Hausdorff and \(Y \) locally connected. Then \(\mathcal{C}^{-1}(f; y) \) is a nonempty continuum for every \(y \in Y \).

Proof. By Theorem 2.6, \(\mathcal{C}^{-1}(f; y) \neq \emptyset \). Now let \(K(y) \) be a neighborhood base of connected sets at \(y \). It then follows from Theorem 2.3(2) that \(\mathcal{C}^{-1}(f; y) = \bigcap \{ \text{Cl}(f^{-1}(V)); V \in K(y) \} \). Since \(\{ \text{Cl}(f^{-1}(V)); V \in K(y) \} \) is a collection of continua directed by inclusion, their intersection is a continuum [8, Theorem 28.2].

2.9. Theorem. Let \(f: X \to Y \) be any function where \(Y \) is compact Hausdorff. Then \(f \) is continuous at \(x_0 \in X \) if and only if \(x_0 \in \mathcal{C}^{-1}(f; y) \) for exactly one \(y \in Y \).

Proof. Suppose first that \(f \) is continuous at \(x_0 \). Then \(f(\mathcal{N}(x_0)) \to f(x_0) \).
and, since Y is Hausdorff, $f(\mathcal{H}(x_0))$ cannot accumulate to any other point.

Now suppose $x_0 \in \mathcal{C}^{-1}(f; y)$ for exactly one $y \in Y$. Assume f is not continuous at x_0. Then there exists an open V containing y such that $f(U) \cap (Y - V) \neq \emptyset$ for every $U \in \mathcal{H}(x_0)$. Thus, $f(\mathcal{H}(x_0))$ accumulates to some $y \in Y - V$, so that $y \in \mathcal{C}(f; x_0)$ which implies $x_0 \in \mathcal{C}^{-1}(f; y)$. But $x_0 \in \mathcal{C}^{-1}(f; f(x_0))$ also, and since $y \neq f(x_0)$, we have a contradiction to our hypothesis. It follows that f is continuous at x_0.

2.10. Theorem [4]. Let $f: X \to Y$ be a connected function, X locally connected and Y compact Hausdorff. Then f is continuous at $x_0 \in X$ if and only if $\bigl\{ y: x_0 \in \mathcal{C}^{-1}(f; y)\bigr\}$ is countable.

2.11. Theorem. Let $f: X \to Y$ be surjective. If $\mathcal{C}^{-1}(f; y)$ is degenerate for every $y \in Y$, then X is a T_1-space and f is a bijection.

Proof. Theorem 2.4 shows each point in X is closed so that X is a T_1-space. If $f(x_1) = f(x_2) = y$, then $\{x_1, x_2\} \subset \mathcal{C}^{-1}(f; y)$. The hypothesis now implies $x_1 = x_2$ so that f is injective.

2.12. Theorem. If $f: X \to Y$ is a bijection, then $\mathcal{C}^{-1}(f; y) = \mathcal{C}(f^{-1}; y)$.

Proof. Definition 2.1 and Theorem 2.2 of [4] give $\mathcal{C}^{-1}(f; y) = \bigcap \{ \mathcal{C}(f^{-1}(V)) : V \in \mathcal{H}(y) \} = \mathcal{C}(f^{-1}; y)$.

2.13. Theorem. Let $f: X \to Y$ be surjective and inverse connected where X is compact Hausdorff and Y is locally connected. If $\mathcal{C}^{-1}(f; y)$ is countable for every $y \in Y$, then

1. f is a bijection, and
2. f^{-1} is continuous.

Proof. By Theorem 2.8, $\mathcal{C}^{-1}(f; y)$ is a nonempty continuum for every $y \in Y$ and the hypothesis that $\mathcal{C}^{-1}(f; y)$ is countable implies $\mathcal{C}^{-1}(f; y)$ is a singleton. It now follows from Theorem 2.11 that f is a bijection.

By Theorem 2.12, $\mathcal{C}^{-1}(f; y) = \mathcal{C}(f^{-1}; y)$ is degenerate for every $y \in Y$. Since X is compact Hausdorff, f^{-1} is continuous by Theorem 2.3 of [4].

3. Inverse cluster sets and the closed graph.

3.1. Theorem. Let $f: X \to Y$ be any function and let $y \in Y$. Then $(x, y) \in X \times Y$ is a cluster point of $G(f)$ that does not belong to $G(f)$ if and only if $x \in \mathcal{C}^{-1}(f; y) - f^{-1}(y)$.

3.2. Theorem. For $f: X \to Y$, $G(f)$ is closed if and only if $\mathcal{C}^{-1}(f; y) = f^{-1}(y)$ for every $y \in Y$.

Proof. Since $\mathcal{C}^{-1}(f; y) = f^{-1}(y)$ if and only if $\mathcal{C}^{-1}(f; y) - f^{-1}(y) = \emptyset$, Theorem 3.1 gives the desired result.
3.3. Theorem. Let \(f: X \to Y \) be closed and \(X \) regular. Then \(C^{-1}(f; y) = \text{Cl}(f^{-1}(y)) \) for every \(y \in Y \).

Proof. Since \(\text{Cl}(f^{-1}(y)) \subseteq C^{-1}(f; y) \) for every \(y \in Y \), we need only show the reverse inclusion. Suppose there exists a point \(x \in X \) such that \(x \in C^{-1}(f; y) \setminus \text{Cl}(f^{-1}(y)) \). The regularity of \(X \) then assures the existence of disjoint open sets \(U \) and \(V \) containing \(x \) and \(\text{Cl}(f^{-1}(y)) \), respectively. Now using the fact that \(f \) is closed, there exists an open \(W \) containing \(y \) such that \(f^{-1}(W) \subseteq V \) [2, Theorem 11.2, p. 86]. Hence, \(x \notin \text{Cl}(f^{-1}(W)) \) which implies \(x \notin C^{-1}(f; y) \). This contradiction gives \(C^{-1}(f; y) \subseteq \text{Cl}(f^{-1}(y)) \) and establishes the theorem.

The following Corollary shows how one of Fuller's results [3] may be proved using inverse cluster sets.

3.4. Corollary [3, Corollary 3.9]. Let \(f: X \to Y \) be closed and \(X \) regular. If \(f^{-1}(y) \) is closed for every \(y \in Y \), then \(f \) has a closed graph.

Proof. Theorems 3.3 and 3.2.

3.5. Theorem. Let \(f: X \to Y \) be closed and monotone where \(X \) is regular. Then \(C^{-1}(f; y) \) is connected for every \(y \in Y \).

Proof. By Theorem 3.3, \(C^{-1}(f; y) = \text{Cl}(f^{-1}(y)) \) for every \(y \in Y \). Thus, \(C^{-1}(f; y) \) is the closure of the connected set \(f^{-1}(y) \), hence connected.

We have seen that for a given function \(f: X \to Y \), \(C^{-1}(f; y) \) is closed for every \(y \in Y \). The following definition is used to determine a sufficient condition for a union of such sets to remain closed.

3.6. Definition. Let \(f: X \to Y \) and let \(A \subseteq Y \). Then \(C^{-1}(f; A) = \bigcup \{ C^{-1}(f; a) : a \in A \} \).

3.7. Theorem. Let \(f: X \to Y \). If \(A \subseteq Y \) is compact, then \(C^{-1}(f; A) \) is closed.

Proof. First observe that

\[
C^{-1}(f; A) = \bigcup \{ C^{-1}(f; a) : a \in A \} \subseteq \bigcap \{ \text{Cl}(f^{-1}(V)) : V \text{ open and } A \subseteq V \}.
\]

We now show the reverse inclusion. Let \(x \in \bigcap \{ \text{Cl}(f^{-1}(V)) : V \text{ open and } A \subseteq V \} \) and assume that for all \(a \in A \) the filterbase \(f^{-1}(\mathcal{N}(a)) \) does not accumulate to \(x \in X \). Then for each \(a \in A \) there exists a \(V(a) \in \mathcal{N}(a) \) and a \(U_a \in \mathcal{R}(x) \) such that \(f^{-1}(V(a)) \cap U_a = \emptyset \). Now let \(\{ V(a)_i : 1 \leq i \leq n \} \) be a finite subcollection of \(\{ V(a) : a \in A \} \) which covers \(A \) and let \(\{ U_{a(i)} : 1 \leq i \leq n \} \) be the corresponding neighborhoods of \(x \). It follows that

\[
\bigcap \{ U_{a(i)} : 1 \leq i \leq n \} \cap f^{-1}(\bigcup \{ V(a)_i : 1 \leq i \leq n \}) = \emptyset
\]

so that \(x \notin \bigcap \{ C^{-1}(f^{-1}(V)) : V \text{ open and } A \subseteq V \} \). But this contradicts our
hypothesis. We conclude \(x \in C^{-1}(f; A) \) and this implies \(C^{-1}(f; A) = \bigcap \{ \text{Cl}(f^{-1}(V)) : V \text{ open and } A \subseteq V \} \).

The following Corollary again shows how one of Fuller’s results [3] may be obtained using inverse cluster sets.

3.8. Corollary [3, Theorem 3.6]. Let \(f: X \to Y \) be a given function with closed graph. If \(A \subseteq Y \) is compact, then \(f^{-1}(A) \) is closed.

Proof. Theorem 3.2 along with Theorem 3.7 shows that

\[
f^{-1}(A) = \bigcup \{ f^{-1}(a) : a \in A \} = \bigcup \{ C^{-1}(f; a) : a \in A \} = C^{-1}(f; A).
\]

3.9. Theorem. Let \(f: X \to Y \) be continuous from the \(H \)-closed space \(X \) into the Hausdorff space \(Y \). Then \(f \) maps regular-closed sets onto closed sets.

Proof. Let \(M \) be a regular-closed subset of \(X \). It follows that \(M \) is an \(H \)-closed subspace of \(X \). Now consider any \(y \in \text{Cl}(f(M)) \). Since \(f^{-1}(\text{H}(y)) \) is an open filterbase with a trace on \(M \), \(f^{-1}(\text{H}(y)) \) accumulates to some \(x \in M \) [1, Theorem 3.2] so that by Theorem 2.1(3), \(x \in C^{-1}(f; y) \). The fact that \(f \) has a closed graph, along with Theorem 2.2, implies \(x \in C^{-1}(f; y) = f^{-1}(y) \) so that \(y \in f(M) \). We conclude \(f(M) \) is closed.

4. Connectivity functions and inverse cluster sets. For a given function \(f: X \to Y \) where both \(X \) and \(Y \) are first countable, the inverse cluster set \(C^{-1}(f; y) \) is precisely the set \(T(f; y) \) as defined in [5, Definition 3.2]. We now show how cluster sets may be used to generalize Theorem 3.6 of [5] after recalling that a connected function \(f: X \to Y \) is one that preserves connected sets and a connectivity function is one such that the induced function \(g: X \to X \times Y \), defined by \(g(x) = (x, f(x)) \), is connected.

4.1. Theorem. Let \(f: X \to Y \) be a connected function where \(X \) is compact. Then \(f \) is a connectivity function if for each connected \(M \subseteq X \) and any \(x \in M \), \(C^{-1}(f; f(x)) \cap \text{Cl}(M) = \{x\} \).

Proof. Let \(f \) be connected and assume the given condition. Suppose there exists a connected \(M \subseteq X \) such that \(g(M) = H \cup K \) where \(H \) and \(K \) are separated and define \(A = g^{-1}(H) \cap M \) and \(B = g^{-1}(K) \cap M \). Then for any \(x \in A \), there exist open sets \(U \in \text{H}(x) \) and \(V \in \text{H}(f(x)) \) such that \((U \times V) \cap K = \emptyset \). Consequently, no point of \(U \cap B \) can map into \(V \) under \(f \). Since \(f(M) = f(A) \cup f(B) \) and neither \(f(A) \) nor \(f(B) \) can be empty, we proceed to show \(f(A) \) and \(f(B) \) are separated, thereby obtaining a contradiction. Suppose \(f(x) \in \text{Cl}(f(B)) \) for \(x \in A \). Then \(f^{-1}(\text{H}(y)) \cap B \) is a filterbase on the compact set \(\text{Cl}(M) \) and, hence, accumulates to some \(x_0 \in \text{Cl}(M) \). Therefore, \(x_0 \in C^{-1}(f; f(x)) \), and, since \(f(U \cap B) \cap V = \emptyset \), we have \(\text{Cl}(f^{-1}(V) \cap B) \cap U = \emptyset \). Consequently, \(f(x) \notin C^{-1}(f; f(x)) \cap \text{Cl}(M) \) which contradicts the given
condition of the theorem. We conclude \(f(x) \notin \text{Cl}(f(B)) \) for every \(x \in A \) and, likewise, \(f(x) \notin \text{Cl}(f(A)) \) for every \(x \in B \). This implies \(f(M) \) is not connected. Since \(f \) is given as a connected function, it must follow that \(g \) is connected.

The following Lemma and Theorem give a more workable insight into the condition stated in Theorem 4.1.

4.2. Lemma. Let \(f: X \to Y \) be a given function and let \(A \subset X \). If \(C^{-1}(f(A); y) \) denotes the inverse cluster set of \(f|A: A \to Y \) where \(A \) has the subspace topology, then \(C^{-1}(f(A); y) \subset C^{-1}(f; y) \cap A \) and the equality holds provided \(A \) is open.

Proof. The proof consists of the following set relationships:

\[
C^{-1}(f|A; y) = \bigcap \{ \text{Cl}_A((f|A)^{-1}(V)); V \in \mathcal{N}(y) \}
\]

\[
= \bigcap \{ \text{Cl}_A(f^{-1}(V) \cap A); V \in \mathcal{N}(y) \}
\]

\[
\subset \bigcap \{ \text{Cl}(f^{-1}(V)) \cap A; V \in \mathcal{N}(y) \}
\]

\[
= \bigcap \{ \text{Cl}(f^{-1}(V)); V \in \mathcal{N}(y) \} \cap A
\]

\[
= C^{-1}(f; y) \cap A.
\]

Observe that if \(A \) is open, the subset relation in the proof is an equality.

4.3. Theorem. Let \(f: X \to Y \) be a given function and consider the following conditions:

(1) For each connected set \(M \subset X \) and \(x \in M \), \(C^{-1}(f; f(x)) \cap \text{Cl}(M) = \{x\} \).

(2) For each component \(C \) of \(X \), \(f|C: C \to f(C) \) is a bijection with a closed graph.

Then (1) implies (2) and if \(X \) is locally connected, (1) and (2) are equivalent.

Proof. To show (1) implies (2), let \(C \) be a component of \(X \). Then for each \(x \in C \), where \(y = f(x) \), we have by Lemma 4.2 and the fact that \(C \) is closed,

\[
C^{-1}(f|C; y) \subset C^{-1}(f; y) \cap C = C^{-1}(f; y) \cap \text{Cl}(C) = \{x\}.
\]

Thus, \(f|C \) is a bijection by Theorem 2.11. Since \(C^{-1}(f|C; y) = f^{-1}(y) \), Theorem 3.2 gives the graph of \(f \) closed.

Now assume (2) holds where \(X \) is locally connected, \(M \subset X \) is connected and \(x \in M \). Let \(C \) be the component of \(X \) containing \(\text{Cl}(M) \) and recall that components of locally connected spaces are open so that Lemma 4.2 holds. Then we have

\[
C^{-1}(f|C; y) \cap \text{Cl}(M) \subset C^{-1}(f; f(x)) \cap C = C^{-1}(f|C; f(x)) = \{x\}.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
REFERENCES

