A general proof of Bing’s shrinkability criterion
HTML articles powered by AMS MathViewer
- by A. Marin and Y. M. Visetti
- Proc. Amer. Math. Soc. 53 (1975), 501-507
- DOI: https://doi.org/10.1090/S0002-9939-1975-0388319-X
- PDF | Request permission
Abstract:
This paper gives a proof of the general Bing shrinkability criterion, including a proof of the fundamental theorem that a shrinkable compact upper semicontinuous decomposition of a complete metric space is realized by a pseudo-isotopy of the space.References
- R. H. Bing, A homeomorphism between the $3$-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354–362. MR 49549, DOI 10.2307/1969804
- R. H. Bing, A decomposition of $E^3$ into points and tame arcs such that the decomposition space is topologically different from $E^3$, Ann. of Math. (2) 65 (1957), 484–500. MR 92961, DOI 10.2307/1970058
- R. H. Bing, The cartesian product of a certain non-manifold and a line is $E_{4}$, Bull. Amer. Math. Soc. 64 (1958), 82–84. MR 97034, DOI 10.1090/S0002-9904-1958-10160-3
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Robert D. Edwards and Leslie C. Glaser, A method for shrinking decompositions of certain manifolds, Trans. Amer. Math. Soc. 165 (1972), 45–56. MR 295357, DOI 10.1090/S0002-9947-1972-0295357-6
- Louis F. McAuley, Some upper semi-continuous decompositions of $E^{3}$ into $E^{3}$, Ann. of Math. (2) 73 (1961), 437–457. MR 126258, DOI 10.2307/1970312 —, Upper semicontinuous decompositions of ${E^3}$ into ${E^3}$ and generalizations to metric spaces, Topology of $3$-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 21-26. MR 25 #4502.
- Kiiti Morita and Sitiro Hanai, Closed mappings and metric spaces, Proc. Japan Acad. 32 (1956), 10–14. MR 87077
- A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690–700. MR 87078, DOI 10.1090/S0002-9939-1956-0087078-6
- I. A. Vaiĭnšteĭn, On closed mappings of metric spaces, Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 319–321 (Russian). MR 0022067
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 501-507
- MSC: Primary 54B15; Secondary 57A10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0388319-X
- MathSciNet review: 0388319