A NOTE ON LIFTING BRAUER CHARACTERS

STEPHEN M. GAGOLA, JR.

ABSTRACT. A Brauer character of a finite group may be lifted to an ordinary character if it lies in a block whose defect groups are contained in a normal p-solvable subgroup.

By the Fong-Swan theorem [2, Theorem 72.1], an irreducible Brauer character of a finite p-solvable group G may be lifted to an ordinary (complex) character of G. In other words, every Brauer character ϕ is the restriction of some ordinary character χ to the p-regular elements of G. Professor I. M. Isaacs has shown [5] that the character χ may be chosen to satisfy certain extra conditions which when p is odd, uniquely determine χ. By extending a theorem which appears in that paper [5, Theorem 3.1], the hypothesis of p-solvability on G may be weakened somewhat.

Specifically, the main result of this paper is the following

Theorem. Let ϕ be an irreducible Brauer character of the finite group G, and assume that ϕ lies in a block whose defect groups are contained in a normal p-solvable subgroup of G. Then ϕ may be lifted to an ordinary character χ of G.

We will not be concerned with general uniqueness questions here.

For the remainder of this paper, G denotes a finite group, and F is a field of characteristic p which is a splitting field for all subgroups of G. If V is an $F[G]$-module, let $J(V)$ be the intersection of all maximal submodules of V. Finally, if U and V are $F[G]$-modules affording the Brauer characters ϕ and μ, respectively, and if V is irreducible, then the multiplicity of μ in ϕ is the multiplicity of V as a composition factor of U.

Lemma 1. Let $N < G$ and let W be an irreducible $F[N]$-module which affords the Brauer character μ. Assume that μ can be lifted to an ordinary character Ψ in such a way that the inertia groups $J_G(\mu)$ and $J_G(\Psi)$ coincide. Denote by μ^G the Brauer character which the induced module W^G affords. Let \mathcal{S} denote the set of all irreducible Brauer characters ϕ of G which are constituents of μ^G, but which are not afforded by any composition factor of $J(W^G)$. Finally, let \mathcal{S} denote the set of ordinary irreducible characters χ of G which are constituents of Ψ^G and which have the property that the
decomposition number $d_\mathcal{S}$ does not vanish for some $\phi \in \mathcal{S}$. Then, restriction to p-regular elements is a 1-1 correspondence between the elements of \mathcal{S} and the elements of \mathcal{S}.

Proof. Write $\mu^G = \sum_{\phi \in \mathcal{S}} f_\phi \phi + \Phi$, where no constituent of Φ lies in \mathcal{S}. We first compute the restriction of ϕ to N, where $\phi \in \mathcal{S}$. Let W and V be irreducible $F[N]$- and $F[G]$-modules affording μ and ϕ, respectively. By Clifford's theorem, V_N is completely reducible and, since F is a splitting field for N, the multiplicity of W as a composition factor of V_N is the F-dimension of $\text{hom}_F[W, V_N]$. By the Nakayama relations [4, p. 556], this dimension equals the F-dimension of $\text{hom}_F[W^G, V]$. Since V is irreducible, this last space is naturally isomorphic to $\text{hom}_F[W^G/W, V]$.

Since $W^G/J(W^G)$ is completely reducible, and F is a splitting field for G, this last space has F-dimension equal to the multiplicity of V in $W^G/J(W^G)$. However, $\phi \in \mathcal{S}$, which means that V is not a composition factor of $J(W^G)$, so that the multiplicity of V in $W^G/J(W^G)$ is f_ϕ. Therefore, μ appears in ϕ_N with multiplicity f_ϕ. We may write

$$\phi_N = f_\phi (\mu_1 + \cdots + \mu_t),$$

where $\mu = \mu_1$ and μ_1, \ldots, μ_t are the distinct G-conjugates of μ.

Similarly write $\Psi^G = \sum e_\chi \chi + X$, where each χ lies in \mathcal{S}, and no constituent of X lies in \mathcal{S}. Since $\zeta^G_G(\mu) = \zeta^G_G(\Psi)$, the number of distinct G-conjugates of Ψ is t, and by Frobenius reciprocity,

$$\chi_N = e_\chi (\Psi_1 + \cdots + \Psi_t),$$

where $\Psi = \Psi_1$, Ψ_2, \ldots, Ψ_t are the distinct G-conjugates of Ψ.

Let R and S denote the set of p-regular elements of G and N, respectively. We now use the equations

$$(\Psi|_S)^G = (\Psi^G|_S) \quad \text{and} \quad (\chi|_R)_N = (\chi_N|_S).$$

(The first equation follows from the fact that the values of μ^G may be computed by the usual formulas for an induced class function, a fact proved in [1, §25].) The first equation may be rewritten as

$$\sum_{\phi \in \mathcal{S}} f_\phi \phi + \Phi = \sum_{\chi \in \mathcal{S}} e_\chi \chi_R + \chi_R.$$

This implies that for $\chi \in \mathcal{S}$,

$$\chi_R = \sum_{\phi \in \mathcal{S}} d_\chi \phi + \eta_\chi,$$

where η_χ has constituents appearing in Φ. Now, no ϕ in \mathcal{S} appears as a constituent of χ_R, so that

$$f_\chi = \sum_{\chi \in \mathcal{S}} e_\chi.$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
For \(\chi \in \mathcal{I} \), the equation \((\chi|_R)_N = (\chi_N)_S \) implies
\[
\sum_{\phi \in \mathcal{S}} d_{\chi, \phi} \phi_N + (\eta_\chi)_N = e_\chi (\mu_1 + \cdots + \mu_t),
\]
and since \(\phi_N = f_\phi (\mu_1 + \cdots + \mu_t) \), we get
\[
(**) \quad e_\chi \geq \sum_{\phi \in \mathcal{S}} d_{\chi, \phi} f_\phi.
\]

Now, combining (*) and (**):
\[
\int_\phi = \sum_{\chi \in \mathcal{I}} e_\chi d_{\chi, \phi} \geq \sum_{\chi \in \mathcal{I}} \sum_{\phi \in \mathcal{S}} d_{\chi, \phi'} f_{\phi'} d_{\chi, \phi} \\
= \sum_{\phi \in \mathcal{S}} \left(\sum_{\chi \in \mathcal{I}} d_{\chi, \phi'} d_{\chi, \phi} \right) f_{\phi'} \\
\geq \left(\sum_{\chi \in \mathcal{I}} d_{\chi, \phi}^2 \right) f_{\phi} \geq f_{\phi}.
\]

The last inequality is valid since (*) implies that, for every \(\phi \in \mathcal{S} \),
there exists \(\chi \in \mathcal{I} \) with \(d_{\chi, \phi} \neq 0 \). We now have that equality holds through-
out, in the above chain of inequalities, and, in particular, \(\sum_{\chi \in \mathcal{I}} d_{\chi, \phi}^2 = 1 \) holds
for every \(\phi \in \mathcal{S} \). Therefore, for every \(\phi \in \mathcal{S} \), there exists a unique \(\chi \in \mathcal{I} \)
with \(d_{\chi, \phi} = 1 \), and \(d_{\chi', \phi} = 0 \) for \(\chi' \neq \chi \) in \(\mathcal{I} \). But then (*) implies that \(f_{\phi} = e_\chi \), and since \(\mu(1) = \Psi(1) \), \(\chi \) must be a lift of \(\phi \). We have now proved that
every \(\phi \in \mathcal{S} \) has a unique lift \(\chi \) in \(\mathcal{I} \). Finally, if \(\chi \in \mathcal{I} \), then, by definition,
there exists \(\phi \in \mathcal{S} \) with \(d_{\chi, \phi} \neq 0 \). But, by the above, \(\chi \) is a lift of \(\phi \). Thus,
the map \(\chi \mapsto \chi_R \) is a 1-1 correspondence between \(\mathcal{I} \) and \(\mathcal{S} \).

Definition. Let \(V \) be an \(F[G] \)-module and \(N \) a subgroup of \(G \). \(V \) is \(N \)-
reducible if every exact sequence of \(F[G] \)-modules \(U \rightarrow V \rightarrow Y \), which splits
when considered as a sequence of \(F[N] \)-modules, necessarily splits as a se-
quence of \(F[G] \)-modules. Thus, every module is \(G \)-reducible, and a module
is 1-reducible iff it is completely reducible. (By using the other two posi-
tions of the exact sequence, one can define the usual notions of \(N \)-injectiv-
ity and \(N \)-projectivity.)

Lemma 2. Let \(V \) be an \(F[G] \)-module and \(N \) a subgroup of \(G \). Let \(T \) be
a set of coset representatives for the right cosets of \(N \) in \(G \). Assume that
there exists \(\alpha \in C_{F[G]}(N) \) such that \(\sum_{x \in T} x^{-1} \alpha x \) acts like the identity on
\(V \). Then \(V \) is \(N \)-reducible.

Proof. This is essentially the proof of (d) \(\rightarrow \) (a) of Theorem 1 of [3].

Lemma 3. Let \(N \triangleleft G \) and let \(\mu \) be an irreducible Brauer character of \(N \).
Assume that \(\mu \) can be lifted to an ordinary character \(\Psi \) with the property
that \(\Psi(\mu) = \Psi_G(\Psi) \). Finally, let \(B \) be a \(p \)-block of \(G \) whose defect groups
are contained in \(N \). Then the restriction to \(p \)-regular elements defines a
1-1 correspondence between the set of irreducible constituents of Ψ^G which lie in B and the set of irreducible Brauer constituents of μ^G which lie in B.

Proof. Define \mathcal{S} and \mathcal{T} as in the statement of Lemma 1, and again let R denote the set of p-regular elements of G. Then $\chi \mapsto \chi_R$ is a 1-1 correspondence between the elements of \mathcal{S} and \mathcal{T}. Clearly $\chi \in B$ iff $\chi_R \in B$. It suffices to show that all the irreducible Brauer constituents of μ^G which belong to B necessarily lie in \mathcal{S}.

Let W afford μ and let e denote the centrally primitive idempotent of $F[G]$ which corresponds to the block B. Then $W^G = (W^G)_e \cdot (W^G)(1 - e)$. The composition factors of $(W^G)_e$ afford Brauer characters in B, and no composition factor of $(W^G)(1 - e)$ belongs to B. We must show that $J(W^G)_e \subseteq (W^G)(1 - e)$, and this is equivalent to the statement that $(W^G)_e$ is completely reducible.

Since B has a defect group contained in N, it follows that the block idempotent e has a representation of the form $e = \sum_{x \in T} x^{-1} \alpha x$, where T is a set of coset representatives for N in G, and $\alpha \in C_{F[G]}(N)$. (This is essentially Lemma 54.8 of [2, p. 346] with F in place of R.)

Thus, $(W^G)_e$ is N-reducible by Lemma 2. Therefore, $(W^G)_e$ is completely reducible as an $F[G]$-module iff $(W^G)_e|_N$ is completely reducible as an $F[N]$-module. However $(W^G)_e|_N$ is a summand of $(W^G)_N = \sum_{x \in T} W \otimes x$ where each $W \otimes x$ is simple. Hence, $(W^G)_e$ is completely reducible, and we are done.

In order to prove the main theorem of this paper, we need the strengthened version of the Fong-Swan theorem appearing in [5].

Lemma 1. Let N be a p-solvable group and μ an irreducible Brauer character of N. Then there exists an ordinary irreducible character Ψ of N which lifts μ and satisfies $\delta_A(\mu) = \delta_A(\Psi)$, where A is the automorphism group of N.

Proof. This is contained in Theorem 5.4 of [5].

We now present a proof of the theorem quoted at the beginning of the paper.

Let ϕ be an irreducible Brauer character of G and assume that ϕ lies in a block whose defect groups are contained in the normal p-solvable subgroup N. Let μ be a constituent of $\phi|_N$ and lift μ to an ordinary character Ψ satisfying the conclusion of Lemma 4. Since G induces on N a group of automorphisms, clearly $\delta_G(\mu) = \delta_G(\Psi)$. Lemma 3 now implies that ϕ has a lift (which is a constituent of Ψ^G).

We remark that by replacing N by the largest normal p-solvable subgroup of G (so as to assume that N is characteristic in G), it is easy to show that ϕ has a lift χ which satisfies $\delta_G(\phi) = \delta_{\text{aut}(G)}(\chi)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Closing remarks. I would like to thank the referee for his careful reading of this paper and for pointing out that, in the situation of Lemma 1, the set \mathcal{S} consists precisely of those irreducible Brauer constituents of μ^G which have vertices contained in N. (Of course, the vertex of a Brauer character means the vertex of an irreducible $F[G]$-module which affords it.) This observation follows from the equivalence of (i) and (iii) in the following

Proposition. Let $N \triangleleft G$, W an irreducible $F[N]$-module and V an irreducible $F[G]$-module. Assume that V is a composition factor of W^G. Then the following conditions on V are equivalent.

(i) A vertex for V is contained in N.

(ii) $W^G = U \downarrow S$ where no composition factor of U is isomorphic to V, and S is a direct sum of simple modules all being isomorphic to V.

(iii) V is not a composition factor of $J(W^G)$.

Proof. (i) \implies (ii). Write $W^G = U \downarrow S$ with S isomorphic to a direct sum of copies of V and with $\dim F U$ minimal. Suppose X and Y are submodules of U with $Y \subseteq X$ and $X/Y \cong V$. Then $Y \hookrightarrow X \twoheadrightarrow V$ is an exact sequence of $F[G]$-modules. Since X is a submodule of W^G, and $W^G|_N$ is completely reducible, the sequence splits when regarded as a sequence of $F[N]$-modules. However, a vertex of V is contained in N, so V is N-projective and the sequence splits as a sequence of $F[G]$-modules. Thus V is isomorphic to a submodule V' of X and, hence, of U. By considering the sequence $V' \hookrightarrow U \twoheadrightarrow U/V'$ and using the fact that V' is N-injective, we have $U = U_0 \downarrow V_1$. But then $W^G = U_0 \downarrow (V_1 \downarrow S)$, contradicting the minimality of $\dim F U$, and thereby proving (ii).

(ii) \implies (iii). The hypothesis of (ii) implies $J(W^G) \subseteq U$ and (iii) is immediate.

(iii) \implies (i). Since V is a composition factor of W^G, it follows from the Nakayama relations and the semisimplicity of V_N that W is a summand (and, hence, a homomorphic image) of V_N. By the Nakayama relations again, V is isomorphic to a submodule, say V_1, of W^G. Since $V_1 \not\subseteq J(W^G)$, we have $W^G = V_1 \downarrow M$ for some maximal submodule M of W^G. This equation implies that V_1 is N-projective, and so N contains a vertex of V_1, proving (i).

As the referee has kindly pointed out, this Proposition, together with Lemmas 1 and 4 imply the following strengthened version of the main theorem of this paper:

Theorem. Let ϕ be an irreducible Brauer character of G and assume that a vertex for a module affording ϕ is contained in a normal p-solvable subgroup of G. Then ϕ may be lifted to an ordinary character χ of G.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824