S-TRANSVERSALITY

L. A. FAVARO

ABSTRACT. This paper will extend Thom's transversality theorem to differentiable mappings between foliated manifolds, and deal with mappings with "nice" nontransversal points.

Introduction. Let M and N be differentiable manifolds of dimensions m and n, respectively, and let F and L be foliations on M and N of codimensions d and q, respectively. Let $T(J, L)$ be the set of differentiable maps $f: M \to N$ that carries the leaves of F transversally to the leaves of L. It is easy to see that this set is open and nondense in $C^2(M, N)$ with the C^2-fine topology; see Proposition 1.5 and Corollary 1.7. Our main purpose is to enlarge $T(J, L)$ to obtain a dense set in $C^s(M, N)$ with the C^s-fine topology, for a suitable s, such that the new maps added have only "nice" nontransversal points, i.e., the set of the nontransversal points is a stratified set in the sense of Whitney [2, p. 133]; such a set we will call a manifold collection. With this objective in mind, we introduce the S-transversality maps and prove the more general theorem: the set of these maps is dense in $C^s(M, N)$ with the C^s-fine topology.

The author wishes to thank Professor G. F. Loibel of ICMUSP-São Carlos, Brazil, and Professor R. Wells of Pennsylvania State University for many helpful conversations, and the referee for improvements suggested in the manuscript. Also he wishes to thank the Department of Mathematics of Brandeis University.

1. Preliminaries. Let M and N be C^r-manifolds of dimension m and n, respectively, $r > 1$. Let $f: M \to N$ be a C^r-map, $j^r_f(p)$ be the r-jet of f at p and $J^r_f(M, N)$ the set of r-jets of C^r-maps from M to N. We will denote by $J^r(m, n)$ the set of r-jets at $(0, \ldots, 0)$ of C^r-maps from R^m to R^n that carries the origin to the origin, and by $L^r(m, n) = L^r(m) \times L^r(n)$, where $L^r(m)$ is the group of the invertible elements of $J^r(m)$ and $J^r(n)$.

Received by the editors April 8, 1974 and, in revised form, October 1, 1974.
Key words and phrases. S-transversality, Whitney's topology, foliations and transversal points.

1 Partially supported by FAPESP-Brazil, grant Math 72/1259.
invariant under the action of \(L'(m, n) \), then \(S \) is called a manifold of \(r \)-singularities. In this case we will denote by \(S(M, N) \) the subbundle of \(J'(M, N) \) that has fiber \(S \). For details see \([1]\).

Now we will give some facts concerning the \(C^r \)-fine topology on \(C'(M, N) \); for details see \([3]\) and \([4]\). For each open subset \(U \) of \(J'(M, N) \) let \(F(U) = \{ f \in C'(M, N) | J'(M) \subset U \} \). The \(C^r \)-fine topology on \(C'(M, N) \) has as a base of open sets the sets \(F(U) \).

Let \(A \) be an open subset of \(R^m \) and \(b: A \rightarrow R^n \) be a \(C^r \)-map; we write
\[
\|f\|_{r, x} = |b_1(x)| + \cdots + |b_n(x)| + \sum_{i=1}^m |\partial^i b_j(x)|,
\]
where \(t = (t_1, \ldots, t_m) \) is a sequence of nonnegative integers; we will denote \(\|h\|_{r,D} = \sup \{\|h\|_{r,x} | x \in D \} \) for \(D \) a subset of \(A \). Also we will denote \(|t| = t_1 + t_2 + \cdots + t_m \).

Given any open covering \(\{O_j\} \) of \(N \) and a \(C^r \)-map \(f: M \rightarrow N \), there exist a numerable locally finite refinement \(\{V_j\} \) of \(\{O_j\} \) and a numerable locally finite refinement \(\{W_j\} \) of \(\{V_j\} \) such that the \(V_j \) are open coordinates sets, \(V_j \) is compact, \(F(V_j) \subset O_{i(j)} \) and \(W_j \subset V_j \). If \(a: V_j \rightarrow R^m \) and \(b: O_i \rightarrow R^n \) are the coordinate maps, and \(\epsilon: M \rightarrow R^+ \) is a continuous map, we write
\[
N(f, V, O, W, \epsilon) = \{ p: M \rightarrow N | \|b|^{-1} - b|^{-1}\|_{r, a(x)} < \epsilon(x), x \in V_j, \text{ and } g(V_j) \subset O_{i(j), j=1,2,\ldots} \}.
\]
The family of the \(N(f, V, O, W, \epsilon) \), when \(\epsilon \) runs on the set of continuous maps from \(M \) to \(R^+ \), is a fundamental neighborhoods system of \(f \) in the \(C^r \)-fine topology. When \(V \) and \(O \) are coordinate open sets in \(M \) and \(N \), respectively, and \(f: M \rightarrow N \) is a \(C^r \)-map such that \(f(V) \subset O \), then a fundamental neighborhoods system of \(f \) in \(V \) is given by the family of sets
\[
N(f|_V, \epsilon) = \{ q: V \rightarrow N | \|b|^{-1} - b|^{-1}\|_{r, a(x)} < \epsilon(x) \}.
\]

Definition 1.1. A \(C^r \)-foliation \(L \) on \(N \) of codimension \(q \leq n \) is given by
(a) \(\{U_i\} \) an open covering of \(N \);
(b) \(\{\psi_i\} \), where \(\psi_i: U_i \rightarrow R^q \) is a \(C^r \)-submersion;
(c) for each \(x \in U_i \cap U_j \) exists a \(C^r \)-diffeomorphism \(\gamma_{ji} \) from an open neighborhood of \(\psi_i(x) \) over an open neighborhood of \(\psi_j(x) \), such that \(\psi_j = \gamma_{ji} \circ \psi_i \).

The maps \(\psi_i: U_i \rightarrow R^q \) are called a local representation of the foliation \(L \). The leaves of \(L \) are the connected submanifolds of \(M \) given locally by \(\psi_i^{-1}(z) \), \(z \in \psi_i(U_i) \). We may choose a local representation of \(L \) such that \(\psi_i \) is the natural projection \(\psi_i(y_1, \ldots, y_n) = (y_1, \ldots, y_q) \).

Definition 1.2. A \(C^r \)-map \(f: M \rightarrow N \) is transverse to \(L \) at \(x \in M \) if \(f_x(M_x) + L_x \cap N = N(f(x)) \), where \(f_x \) is the differential of \(f \) at \(x \), \(M_x \) is the tangent space.
to \(M \) at \(x \) and \(L_{f(x)} \) is the tangent space at \(f(x) \) to the leaf of \(L \) that contains \(f(x) \). If \(J \) is a \(C^r \)-foliation of codimension \(d \) on \(M \), then we say that \(f: M \to N \) is transverse to the couple \((J, L)\) at \(x \) if \(f_x(J_x) + L_{f(x)} = N_{f(x)} \). When this is true for all \(x \in K \), we say that \(f \) is transverse to the couple \((J, L)\) on \(K \); we will denote \(T(f, J, L, K) = \{ f: M \to N \mid f \text{ is transverse to } (J, L) \text{ on } K \} \).

Proposition 1.3. Let \(f: M \to N \) be a \(C^r \)-map and let \(J \) and \(L \) be foliations on \(M \) and \(N \) of codimensions \(d \) and \(q \), respectively, \(m \geq d + q \). Then \(f \) is transverse to \((J, L)\) at \(x \) if and only if \(F = (\phi, \psi \circ f|_V) \) is a regular map, where \(V \) is an open coordinate set containing \(x \), \(\phi: V \to R^d \) is a local representation of \(J \), and \(U \) is an open coordinate set containing \(f(x) \), such that \(f(V) \subseteq U \), and \(\psi: U \to R^q \) is a local representation of \(L \).

The proof is very easy.

Now we will show that the set \(T(f, L, K) \) is open but not dense in \(C^r(M, N) \) with the \(C^r \)-fine topology, where \(K \subseteq M \) is a closed subset. Note that \(T(f, K, L) = \emptyset \) if \(m < d + q \); then we only need prove for \(m \geq d + q \).

Lemma 1.4. With the notations of Proposition 1.3, let \(W \) be an open set such that \(W \subseteq V \); also suppose that \(\overline{V} \) is compact and \(K \subseteq M \) is a closed set. Then the set

\[
T(f, L, V, U, W, K) = \{ g: M \to N \mid g(V) \subseteq U, \text{ and } g \text{ is transverse to } (J, L) \text{ on } W \cap K \}
\]

is open in the \(C^r \)-fine topology, \(r \geq 1 \).

The proof is standard and we will omit it.

Proposition 1.5. If \(K \subseteq M \) is closed, then \(T(f, L, K) \) is open in \(C^r(M, N) \) with the \(C^r \)-fine topology, \(r \geq 1 \).

Proof. Let \(\{ U_i \}_{i \in I} \) be an open covering of \(N \) by open coordinate sets, such that the local representation of \(L \) on \(U_i \) is \(\psi(y_1, \ldots, y_n) = (y_1, \ldots, y_q) \). Given \(f \in T(f, J, L, K) \), let \(\{ W_j \}_{j=1,2,\ldots} \) and \(\{ V_j \}_{j=1,2,\ldots} \) be locally finite refinements of the coverings \(\{ f^{-1}(U_i) \}_{i \in I} \) such that \(\overline{V_j} \) is compact and \(\overline{W_j} \subseteq V_j \subseteq f^{-1}(U_{i(j)}) \).

By Lemma 1.4, there are \(e_j > 0 \), \(j = 1, 2, \ldots \), such that

\[
V_j = \bigcap_i \{ f_i(V_j, U_{i(j)}, \Omega_j, e_j) \subseteq T(f, J, L, V_j, U_{i(j)}, W_j, K) = T_{i(j)}
\]

where the \(\Omega_j \) are open sets satisfying \(\overline{W_j} \subseteq \overline{\Omega_j} \subseteq \overline{V_j} \), and

\[
\bigcap_i \{ f_i(V_j, U_{i(j)}, \Omega_j, e_j) = \{ g: M \to N \mid g(V_j) \subseteq U_{i(j)} \}
\]

and \(\| b_ja_j^{-1} - b_i a_i^{-1} \|_{1, a_j(x)} < e_j, \ x \in \Omega_j \). We now take \(N_{i(j)}(f_i(V_j, \Omega_j, \Omega_j, e_j)) \), where \(V_j = (V_j), \ U_{i(j)} = (U_{i(j)}), \Omega = (\Omega_j) \) and
$e = (e, \emptyset)$; we have $N_1(f, V, U, \Omega, e) \subset \bigcap_j T_j$. If we note $A(V, U) = \{ g \in C^1(M, N) | g(V, U) \subset U \}$, then $A(V, U)$ is open in $C^1(M, N)$ with the C^1-fine topology and $\bigcap_j T_j \subset T(J, L, K) \cap A(V, U)$. But this implies that $N_1(f, V, U, \Omega, e) \subset T(J, L, K)$, and the proof is finished.

Proposition 1.6. Let J and L be C^2-foliations on M and N of codimensions d and q, respectively; then there is a nonempty open set $\mathcal{U} \subset C^2(M, N)$ in the C^2-fine topology such that $\mathcal{U} \cap T(J, L, K) = \emptyset$, where $K \subset M$ is a closed set with nonempty interior.

Proof. If $m < d + q$, we may take $\mathcal{U} = C(M, N)$. Then we will suppose that $m \geq d + q$. Let x be an interior point of K and let $f: M \to N$ be a C^2-map such that x is a singular point of $F = (\phi, \psi)_{|W}$ and $J^1 F: V \to J^1(V, R^d \times R^q)$ is transverse to $\Sigma(V, R^d \times R^q)$ at x, where $\phi: V \to R^q$ and $\psi: U \to R^q$ are local representations of J and L, respectively, at the neighborhoods V of x and U of $f(x)$, and $\Sigma(V, R^d \times R^q)$ is the singularities set in $J^1(V, R^d \times R^q)$. Also we may suppose $V \subset K$ and the coordinates on V and U such that $\phi(x_1, \ldots, x_m) = (x_1, \ldots, x_d)$ and $\phi(y_1, \ldots, y_n) = (y_1, \ldots, y_q)$.

We know that if $W \subset V$ is an open set and $x \in W$, there is a continuous map $e: V \to R^{++}$ such that for all C^2-maps $h: V \to R^d \times R^q$ satisfying $h(\in A)$, we have $(\phi, \psi \circ h|_W) = h|_W$ for some $h \in N_2(F, e)$. We may take W in such that $W \subset V$.

Now let Ω be an open set such that $\overline{W} \subset \Omega \subset \Omega \subset V$ and let $e: M \to R^{++}$ be a continuous map satisfying $e(x) = e(x)$ if $x \in \Omega$. Say $A = \{ g \in C^2(M, N) | g(\overline{V}) \subset U_1 \}$. By the choice of the coordinates and if $g \in N_2(f, e) \cap A$, we have $(\phi, \psi \circ g|_\Omega) = h|_\Omega$ for some $h \in N_2(F, e)$. Then \overline{x} is a singular point of $(\phi, \psi \circ g|_V)$, i.e., g is not transverse to (J, L) at \overline{x} and the proof is completed, if we take $\mathcal{U} = N_2(f, e) \cap A$.

Corollary 1.7. $T(J, L, M)$ is not dense in $C^2(M, N)$ with the C^2-fine topology.

S-transversality. Let M and N be s-differentiable manifolds of dimensions m and n, J and L be C^s-foliations dimensions d and q, respectively. Also let $S \subset J^s(m, d + q)$, $r \subset s$, be an invariant $(s - r)$-differentiable sub-manifold.

Definition 2.1. We say that $f: M \to N$ is S-transverse to (J, L) at $x \in M$ if $J^r(\phi, \psi \circ f|_V): V \to J^r(V, R^d \times R^q)$ is transverse to $S(V, R^d \times R^q)$ at x, where V and U are open sets containing x and $f(x)$, respectively, with $f(\overline{V}) \subset U$ and $\phi: V \to R^d$ and $\psi: U \to R^q$ the local representations of J and L, respectively. If f is S-transverse to (J, L) at all $x \in K$, $K \subset M$, we say that f is S-transverse to (J, L) on K, and we denote

$S(f, g, K) = \{ f \in C(M, N) | f \text{ is } S \text{-transverse to } (J, L) \text{ on } K \}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Our main goal is to prove that \(T(J, L, S, K) \) is a dense subset of \(C^s(M, N) \) with the \(C^s \)-fine topology, for a suitable \(s \geq r \), when \(K \subset M \) is closed. With this objective in mind we define \(Z \subset J^r(M, N) \) as the set of \(z \in J^r(M, N) \) such that \(J^r(\phi, \psi \circ j)(x) \in S(V, R^d \times R^q) \), where \(z = J^r(x) \) and \(\phi \) and \(\psi \) are representations of \(J \) and \(L \) in the neighborhoods \(V \) of \(x \) and \(U \) of \(f(x) \), respectively. The definition of \(Z \) is independent of the choices of \(\phi, \psi \) and \(f \).

Theorem 2.2. If \(S \subset J^r(m, d + q) \) is an invariant submanifold, then \(Z \subset J^r(M, N) \) is void or a submanifold of the same codimension as \(S \) and \(J^r \) is transverse to \(Z \) at \(x \) if and only if \(f \) is \(S \)-transverse to \((J, L) \) at \(x \).

Proof. Let \(\overline{x} \in Z \) such that \(J^r(\phi, \psi \circ f|_{V})(\overline{x}) \in S(V, R^d \times R^q) \), where \(\overline{x} = J^r(\overline{x}) \) and \(\phi: V \to R^d \) and \(\psi: U \to R^q \) are representations of \(J \) and \(L \), respectively; we may suppose that \(f(V) \subset U \). If \(A(V, U) = \{g: C^s(M, N)|g(V) \subset U\} \) and \(A'(V, U) = \{z \in J^r(M, N)|z = J^r(x), g \in A(V, U), x \in V\} \), then \(A'(V, U) \) is open in \(J^r(M, N) \). Define \(\theta: A'(V, U) \to J^r(V, R^d \times R^q) \) by \(\theta(z) = J^r(\phi, \psi \circ g|_{V})(x) \). We have \(Z \cap A'(V, U) = \theta^{-1}(S(V, R^d \times R^q)) \) and the commutative diagram

\[
\begin{array}{ccc}
A'(V, U) & \xrightarrow{\theta} & J^r(V, R^d \times R^q) \\
\downarrow & & \downarrow \theta \\
J^r(\phi, \psi \circ g|_{V}) & & J^r(\phi, \psi \circ g|_{V})
\end{array}
\]

Then the theorem will follow if we prove that \(\theta \) is transverse to \(S(V, R^d \times R^q) \) at \(\overline{x} \). We may choose the coordinates \((x_1, \ldots, x_m) \) in \(V \) and \((y_1, \ldots, y_q) \) in \(U \) with origins at \(\overline{x} \) and \(f(\overline{x}) \) such that \(\phi \) and \(\psi \) are given by \(\phi(x_1, \ldots, x_m) = (x_1, \ldots, x_d) \) and \(\psi(y_1, \ldots, y_m) = (y_1, \ldots, y_q) \). Then \(\theta \) is given by

\[
\theta = \begin{bmatrix}
x; y; \left(\frac{\partial g_{ij}}{\partial x_j}\right); \left(\frac{\partial^2 g_{ij}}{\partial x_{i1} \partial x_{j2}}\right); \ldots; \left(\frac{\partial^r g_{ij}}{\partial x_{i1} \ldots \partial x_{ir}}\right)
\end{bmatrix}
\]

where \(i = 1, \ldots, m \), \(k = 1, \ldots, q \), \(r = 1, \ldots, m \). Note that the \(I_{d \times d} \) matrix
and the zero matrices that appear above are given by the successive derivatives of \(\phi(x_1, \ldots, x_m) = (x_1, \ldots, x_d) \).

From (*) we see that the image of the tangent space to \(\Lambda^r(V, U) \) by the differential of \(\theta \) at \(\overline{z} \) contains a complementary subspace of the subspace generated by the entries corresponding to the successive derivatives of \(\phi \).

Then to prove that \(\theta \) is transverse to \(S(V, R^d \times R^q) \) at \(\overline{z} \), it is enough to prove that the tangent space to \(S(V, R^d \times R^q) \) at \(O(\overline{z}) \) projects onto the subspace generated by the entries corresponding to the successive derivatives of \(\phi \). To do this, take \(T: V \to V \), a polynomial change of coordinates given by

\[
x_i = \sum_{j=1}^{m} a^i_{j} u_j + \sum_{j_1, j_2=1}^{m} \frac{1}{2} a^{i}_{j_1 j_2} x_{j_1} x_{j_2} + \cdots + \sum_{j_1 \cdots j_r} \frac{1}{r!} a^{i}_{j_1 \cdots j_r} x_{j_1} \cdots x_{j_r},
\]

\[
x_i = u_i, \quad i = 1, \ldots, d; \quad k = d + 1, \ldots, m; \quad a^{i}_{j_1 \cdots j_k} = a^{i}_{\sigma(j_1) \cdots \sigma(j_k)},
\]

where \(\sigma \) is a permutation of \(j_1, \ldots, j_k \).

By the chain rule it is possible to see that the element of \(L^r(m, d + q) \) corresponding to \(T \) takes \(J^r(\phi, \psi \circ f)(\overline{z}) \) to

\[
\begin{bmatrix}
\overline{u} ; (\phi, \psi \circ f) T(\overline{u}) ; \left(\frac{\partial a_i^j}{\partial u_j} \right) ; \left(\frac{\partial^2 a_i^j}{\partial u_{j_1} \partial u_{j_2}} \right) ; \left(\frac{\partial^r a_i^j}{\partial u_{j_1} \cdots \partial u_{j_r}} \right)
\end{bmatrix},
\]

where \(T(\overline{u}) = \overline{z} \). Since \(S \) is invariant under the action of \(L^r(m, d + q) \), we have (**) belonging to \(S(V, R^d \times R^q) \) for \((a^i_j) \) near the \((d \times d) 0\) matrix and \(a^{i}_{j_1 \cdots j_k} \) near zero. But this means that \(S(V, R^d \times R^q) \) contains small segments in the directions of the entries correspondent to the successive derivatives of \(\phi \) near \(\theta(\overline{z}) \); then the projection of the tangent space to \(S(V, R^d \times R^q) \) at \(\theta(\overline{z}) \) is onto the subspace generated by the entries correspondent to the successive derivatives of \(\phi \), and the theorem is proved.

Corollary. If \(K \subset M \) is closed, then \(T(\phi, L, S, K) \) is dense in \(C^s(M, N) \) with the \(C^s \)-fine topology, \(s - r > \max(m - \text{cod } S, 0) \).

Proof. By Thom's transversality theorem [1, p. 32], the set of maps transverse to \(Z \) on \(K \) is dense in \(C^s(M, N) \) with the \(C^s \)-fine topology.

Then the corollary follows from the preceding theorem.

3. **Geometric interpretation.** Let \(S(\phi, L, f) = \{ x \in M \mid f \text{ is not transverse to } (\phi, L) \text{ at } x \} \); we are interested in asking for nice properties for this set, as the singularities theory ask for the singularities set \(S(\phi) \).

As we did in the introduction, a manifold-collection will mean a stratified set in the sense of Whitney [2, p. 133].
Proposition 3.1. If \(J \) and \(L \) are foliations on \(M \) and \(N \) of codimension \(d \) and \(q \), respectively, \(\Sigma \subset J^1(m, d + q) \) is the set of \(1 \)-singularities, and \(f: M \to N \) is \(\Sigma \)-transverse to \((J, L)\) on \(M \), then

(a) \(S(J, L, f) = M \) if \(m < d + q \);

(b) \(S(J, L, f) = \emptyset \) or a manifold-collection of codimension \(m - (d + q) + 1 \), if \(m \geq d + q \).

Proof. Suppose \(m \geq d + q \) and say

\[
S_k(J, L, f) = \{ x \in M | \dim \left[x \Gamma_x + Lf(x) \right] = n - k \};
\]

then \(S(J, L, f) = \bigcup S_k(J, L, f) \). Also, if \(\phi: V \to \mathbb{R}^d \) and \(\psi: U \to \mathbb{R}^q \) are local representations of \(J \) and \(L \), respectively, and \(F = (\phi, \psi \circ f^{-1}) \), we have \(S(J, L, f) \cap V = S(F) \) and \(S_k(J, L, f) \cap V = S_k(F) \).

Since \(J^1F \) is transverse to \(\Sigma(V, \mathbb{R}^d \times \mathbb{R}^q) \), then \(S(F) = \bigcup S_k(F) \) is a manifold-collection and so is \(S(J, L, f) \).

Corollary 3.2. The set of \(C^s \)-maps \(f: M \to N \) such that \(S(J, L, f) \) is a manifold-collection is a dense subset of \(C^s(M, N) \) with the \(C^s \)-fine topology, \(s - 1 > \max(m - \text{cod} \Sigma, 0) \).

Let \(\Sigma_{i_1, \ldots, i_r} i_1 = i_r = 1 \), be the singularities set defined in [5]. Let \(L \) be a foliation of codimension one on \(N \), and let \(\Sigma_{i_1, \ldots, i_r} \) be a \(C^{r+1} \)-map such that \(f^\prime \) is transverse to \(\Sigma_{i_1, \ldots, i_r} \) on \(M \), and suppose that \(f \) is \(\Sigma \)-transverse to \(L \). Using the normal forms of [6], the following was proved in [7]:

(a) if \(x \in T(L, f) \), then the tangent space to \(f(S(f)) \) at \(f(x) \) cuts \(L \) transversely;

(b) if \(x \in S(L, f) \cap \Sigma_{i_1 i_2} (f), i_1 = i_2 = 1 \), and \(\psi: U \to \mathbb{R} \) is a local representation of \(L \) near \(f(x) \), and \(V \) is an open neighborhood of \(x \) such that \(f(V) \subset U \), then \(\psi \circ f \) restricted to \(\Sigma_{i_1 i_2} (f) \cap V \) is nondegenerated;

(c) if \(r > 2 \), the hypotheses are not sufficient to give a definite answer; see the example below.

Example. Let \(f: R^4 \to R^4 \) given by \(f(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_1 x_4 + x_2 x_3 + x_4) \) and let \(L \) be the foliation represented by \(\langle y_1, y_2, y_3, y_4 \rangle = y_2 y_3 + y_4 \). We have \(0 \) a nondegenerate singular point of \(\psi \circ f \) and \(\psi \circ f \) restricted to \(\Sigma_{i_1 i_2} (f) \) is identically zero. Then this situation may change by small deformations.

REFERENCES

DEPARTMENT OF MATHEMATICS, BRANDEIS UNIVERSITY, WALTHAM, MASSACHUSETTS 02154

Current address: Instituto de Ciências Matemáticas, Universidade de São Paulo, C.P. 359–378, CEP 13560, São Carlos, Brasil