SUPPORT PROPERTIES OF GAUSSIAN PROCESSES
OVER SCHWARTZ SPACE

M. ANN PIECH

ABSTRACT. We utilize the concept of an abstract Wiener space to prove
a converse to a theorem of Minlos, thereby obtaining necessary and sufficient
conditions for a Hilbert subspace of \(\mathcal{S}'(\mathbb{R}^d) \) to support a given Gaussian
process over \(\mathcal{S}(\mathbb{R}^d) \).

Stochastic processes over \(\mathcal{S}(\mathbb{R}^d) \) are of current interest as elements in
the construction of relativistic Boson field theories (see Nelson [6], [7]).
The basic process corresponding to the free Euclidean field of mass \(m \) is
the Gaussian process over \(\mathcal{S} \) of mean 0 and covariance \((g, (-\Delta + m^2)^{-1}) \) \(_{L^2(\mathbb{R}^d)} \).
According to a theorem of Minlos [4], this process may be realized on \(\mathcal{S}' \),
the topological dual of \(\mathcal{S} \), by \(\varphi(f): q \rightarrow \langle f, q \rangle \), where \(\langle , \rangle \) denotes the \(\mathcal{S} \), \(\mathcal{S}' \)
pairing. That is, there is a Borel measure \(\mu \) on \(\mathcal{S}' \) so that \(\varphi \) maps \(\mathcal{S} \)
to Gaussian random variables over \(\mathcal{S}' \) with mean 0 and above specified
covariances.

We will say that \(\mu \) is supported on a Hilbert space \(H \) if \(H \subset \mathcal{S}' \), the
injection of \(H \) into \(\mathcal{S}' \) is continuous, and there is a Borel measure \(\mu_0 \) on \(H \)
so that the restriction of \(\varphi(f) \) to \(H \) realizes on \((H, \mu_0) \) the Gaussian
process over \(\mathcal{S} \) of mean 0 and specified covariance. Support properties
of \(\mu \) have been studied by Reed and Rosen [8]. They utilized a theorem
of Minlos to show that certain \(H \)’s support \(\mu \), and they showed by a
rather lengthy direct computation that others failed to support. Related re-
sults concerning the support of \(\mu \) may be found in the recent work of Cannon
[1] and of Colella and Lanford [2]. In this note we show that Minlos’ suffi-
cient condition for \(\mu \) to be supported on \(H \) is, in fact, necessary.

Proposition. Let \((\cdot, \cdot)_1 \) and \((\cdot, \cdot)_2 \) be continuous inner products on \(\mathcal{S} \)
such that \(\|f\|_2 \leq c\|f\|_1 \) for some constant \(c \) and for all \(f \) in \(\mathcal{S} \). Let \(H_1 \)
and \(H_2 \) be the Hilbert space completions of \(\mathcal{S} \) with respect to \(\|\cdot\|_1 \) and
\(\|\cdot\|_2 \) respectively. Since \(\mathcal{S} \) is separable, each \(H_i \) is also separable. Let
\((\varphi, \mu) \) be the realization on \(\mathcal{S}' \) of the Gaussian process over \(\mathcal{S} \) of mean 0
and covariance \((g, f)_2 \). Then \(H_1 \) supports \(\mu \) if and only if the natural in-
jection \(H_1 \subset H_2 \) is Hilbert-Schmidt.

Received by the editors August 7, 1974 and, in revised form, October 9, 1974.
AMS (MOS) subject classifications (1970). Primary 60G15; Secondary 81A18; 28A40.
Key words and phrases. Gaussian process, Schwartz space, free Boson field,
abstract Wiener space.

\[\text{Research supported by NSF grant P028934.} \]
Remark 1. The following are equivalent definitions of the natural injection $\mathcal{H}_1 \subset \mathcal{H}_2$ being \mathcal{H}-S (Hilbert-Schmidt): (i) (used by Gelfand-Vilenkin [4]) There exists a positive symmetric \mathcal{H}-S operator A_1 on \mathcal{H}_1 such that $(f, g)_2 = (A_1 f, A_1 g)_1$. (ii) (used by Reed-Rosen [8]) There exists a 1-1 \mathcal{H}-S operator A_2 on \mathcal{H}_2 such that $\mathcal{S} \subset A_2 \mathcal{H}_2$ and \mathcal{H}_1 is the set $A_2 \mathcal{H}_2$ with norm $\|\cdot\|_2 = \|A_2^{-1}\|_2$. (iii) There exists a positive symmetric \mathcal{H}-S operator A_3 on \mathcal{H}_2' such that $(q, p)'_2 = (A_3 q, A_3 p)'_2$.

Remark 2. \mathcal{S} may be replaced by a nuclear space \mathcal{E}.

Proof of Proposition. We make the identifications by injection $\mathcal{S} \subset \mathcal{H}_1 \subset \mathcal{H}_2$, by restriction $\mathcal{H}_2' \subset \mathcal{H}_1' \subset \mathcal{S}'$ and also canonically identify \mathcal{H}_i with \mathcal{H}_i'' ($i = 1, 2$). The map $\varphi(f)q \mapsto (f, q)$ furnishes a densely defined linear mapping of \mathcal{H}_1'' or \mathcal{H}_2'' to Gaussian random variables of mean 0 and covariance specified by the \mathcal{H}_2'' inner product. Since the \mathcal{H}_2'' inner product is continuous on \mathcal{H}_2'', we obtain a weak distribution [5] over \mathcal{H}_1 which is the restriction to \mathcal{H}_1' of the unit normal distribution over \mathcal{H}_2'. This weak distribution uniquely determines a (finitely additive) cylinder set measure μ_1 on \mathcal{H}_1'.

\mathcal{H}_1' supports μ if and only if μ_1 is countably additive on the ring of cylinder sets in \mathcal{H}_1'. The separability of the Hilbert spaces allows us to apply a theorem of Dudley, Feldman and LeCam [3], which asserts that countable additivity of μ_1 is equivalent to the pair $(\mathcal{H}_1', \mathcal{H}_1'')$ forming an abstract Wiener space in the sense of L. Gross [5]. It is well known (and very easy to calculate) that if \mathcal{K}_1 and \mathcal{K}_2 are two real separable Hilbert spaces, then $(\mathcal{K}_1, \mathcal{K}_2)$ forms an abstract Wiener space if \mathcal{K}_2 is the completion of \mathcal{K}_1 with respect to an inner product $(f, g)_2 = (A f, A g)_1$, where A is positive \mathcal{H}-S on \mathcal{K}_1.

Conversely, we claim that if a real separable Hilbert space \mathcal{K}_2 arises as the completion of a Hilbert space \mathcal{K}_1 with respect to a continuous norm $\|\cdot\|_2$ on \mathcal{K}_1, and if the pair $(\mathcal{K}_1, \mathcal{K}_2)$ forms an abstract Wiener space, then $(f, g)_2 = (A f, A g)_1$ where A is positive, symmetric and \mathcal{H}-S on \mathcal{K}_1. Let us make the identifications $\mathcal{K}_2' \subset \mathcal{K}_1' \approx \mathcal{K}_1 \subset \mathcal{K}_2$, the first containment by restriction and the second by the canonical injection. Then it follows from [5, Corollary 5] that the canonical isomorphism M of \mathcal{K}_2 onto \mathcal{K}_2' has the property that when restricted to \mathcal{K}_1 and viewed as an operator M_1 on \mathcal{K}_1, it is positive symmetric and of trace class. But this means that $(f, g)_2 = (f, M_1 g)_1 = (\sqrt{M}_1 f, \sqrt{M}_1 g)_1$, where \sqrt{M}_1 is \mathcal{H}-S.

REFERENCES

