A BASIS RESULT FOR Σ^0_3 SETS OF REALS
WITH AN APPLICATION TO MINIMAL COVERS

LEO A. HARRINGTON AND ALEXANDER S. Kechris

ABSTRACT. It is shown that every Σ^0_3 set of reals which contains reals of arbitrarily high Turing degree in the hyperarithmetic hierarchy contains reals of every Turing degree above the degree of Kleene's \mathcal{O}. As an application it is shown that every Turing degree above the Turing degree of Kleene's \mathcal{O} is a minimal cover.

In this paper we consider a particular verification of the following nebulously stated and tenuously held principle: Every easily definable set of reals with enough complicated members contains members from any sufficiently large degree of complexity. Let \mathcal{O} be the Turing degree of Kleene's \mathcal{O}. Our result is

Theorem. Any Σ^0_3 set of reals, with the property that every hyperarithmetic real is recursive in some member of it, contains reals of every Turing degree above \mathcal{O}.

As the first author noticed, an application of this theorem gives a new proof of Jockusch's result that there is a cone of minimal covers and estimates the base of that cone to be \mathcal{O}.

1. Preliminaries. Let $\omega = \{0, 1, 2, \ldots \}$ be the set of natural numbers and $R = \omega^\omega$ the set of all functions from ω to ω or (for simplicity) reals. Letters i, j, k, l, m, \ldots will denote elements of ω and $\alpha, \beta, \gamma, \delta, \sigma, \tau, \ldots$ elements of R. We shall use, without explicit reference, standard facts of recursion theory, which can be found, for example, in [5] or [7].

The basic ingredient in the proof of our main theorem is the use of the well-known determinacy of closed games in its effective form (see, for example, [4]), which we proceed to state. For a general explanation of the connection between degrees of unsolvability and determinacy of games, see Martin [3]. Let $\langle a_1, \ldots, a_n \rangle$, where $a_i \in \omega$ or $a_i \in R$ be a trivial recursive coding of n-tuples by reals. For $A \subseteq R$ consider the game in which players I, II alternatively choose natural numbers $\alpha(0), \beta(0), \alpha(1), \beta(1), \ldots$ and I wins iff $(\alpha, \beta) \in A$. If $\sigma \in R$ is a strategy for player I, let $\sigma * \beta$ be the

Received by the editors April 3, 1974 and, in revised form, July 19, 1974 and September 6, 1974.

result of I's moves when he follows σ against Π playing β. More formally
$(\sigma \ast \beta)(n) = \sigma(\beta(n))$. Similarly let $\alpha \circ \tau$ be the result of Π's moves when he
follows τ against I playing α, so that $(\alpha \circ \tau)(n) = \tau(\alpha(n + 1))$. Then we have

Fact (Determinacy of open games). Given a Π^0_1 set of reals B, either
(I) there is a real σ recursive in \mathcal{C} such that for all reals β, $(\sigma \ast \beta, \beta)
\in B$, or

(II) there is a hyperarithmetic real τ such that for all reals α, $(\alpha, \alpha \circ \tau) \notin B$.

2. Proof of the theorem. We are now ready to prove our main result.

Theorem. Any Σ^0_3 set of reals, with the property that every hyperarith-
metic real is recursive in some member of it, contains reals of every Turing
degree $\geq \emptyset$.

Proof. We first prove this for Π^0_1 sets of reals. Let thus $A \subseteq R$ be a
Π^0_1 set satisfying the hypotheses of the theorem. Let $\{e\}^\gamma$, where $e \in \omega$, $\gamma \in R$, denote the eth function from ω into ω partial recursive in γ and put

\[B = \{(e, \eta, \gamma, \beta) : e \in \omega \land \gamma \in \omega \land (\forall n)\{e\}^\gamma(n) \text{ converges in exactly } \eta(n) \text{ steps} \land \beta = (e, \eta, \gamma) \circ \{e\}^\gamma \}. \]

Clearly $B \subseteq R$ is Π^0_1, so by the fact in §1 either (I) or (II) holds. If (II) holds,
let τ be a hyperarithmetic real such that for all $\alpha \in R$, $(\alpha, \alpha \circ \tau) \notin B$. By
assumption, there is a $\gamma \in A$ such that τ is recursive in γ. So for some $e \in \omega$, $\{e\}^\gamma = \tau$. Let $\eta(n) = \text{number of steps in which } \{e\}^\gamma(n) \text{ converges}$. Let
$\alpha = (e, \eta, \gamma)$. Then $(\alpha, \alpha \circ \tau) \notin B$. But clearly $(\alpha, \alpha \circ \tau) \in B$, a contradic-
tion, so case (I) must hold. Thus there is σ recursive in \mathcal{C} such that for all β, $(\sigma \ast \beta, \beta) \in B$. Let \mathcal{C} be recursive in β. We shall prove that a real of the same Turing degree as β belongs to A. Since $(\sigma \ast \beta, \beta) \in B$, clearly
$\sigma \ast \beta = (e, \eta, \gamma)$ for some $e \in \omega$, $\eta, \gamma \in R$ such that $\gamma \in A$, $\{e\}^\gamma$ is total and $\eta(n) = \text{the number of steps in which } \{e\}^\gamma(n) \text{ converge}$. Also $\beta = (e, \eta, \gamma) \circ \{e\}^\gamma$. Thus β is recursive in γ. But also σ is recursive in β, thus γ is recursive in β i.e., γ and β have the same Turing degree. Since $\gamma \in A$, we are done.

The following observation will now complete the proof of the theorem:

For any Σ^0_3 set of reals B there is a Π^0_1 set of reals A such that for
all Turing degrees d, $d \cap B \neq \emptyset \iff d \cap A \neq \emptyset$.

To prove this, find a recursive set R such that for all α,

$\alpha \in A \iff \exists j \forall k R(i, j, \alpha(k))$

and let

$A = \{(i, \alpha, \beta) : \forall j(\beta(j) = \mu k R(i, j, \alpha(k)))\}$. Q.E.D.
Remarks. (1) The above theorem is best possible in the sense that it cannot be improved to include all Π_3^0 sets of reals—the set
\[A = \{ a : (\forall e) (|e|^a \text{ is total} \rightarrow |e|^a \not\in F) \}, \]
where F is a nonempty Π_1^0 set with no hyperarithmetic member, is a Π_3^0 set of reals which is closed under Turing reducibility and which contains all hyperarithmetic reals and yet which fails to contain Kleene’s \mathcal{C}.

(2) The proof of the theorem can be easily modified to show that
\[\text{Determinacy}(\Sigma_n^0) \iff \text{Turing Determinacy}(\Sigma_{n+1}^0), \]
where for a collection of sets of reals Γ, Determinacy $(\Gamma) \iff \forall A \in \Gamma \ (A \text{ is determined})$ and Turing Determinacy $(\Gamma) \iff \forall A \in \Gamma \ (A \text{ is invariant under Turing equivalence} \Rightarrow A \text{ is determined})$. This result has been also proved independently (and a little earlier than us) by Ramez Sami (private communication). In fact the proof above shows that if every Σ_n^0 set is determined, then given a Σ_{n+1}^0 set of reals A which is cofinal (i.e., for every $a \in \mathbb{R}$ there is $\beta \in A$ s.t. a is recursive in β), there is a Turing degree d such that A contains reals of every degree $\geq d$. (To see this we note first that A may be assumed to be Π_1^0 since if $a \in A \Rightarrow \exists mA^*(\langle m, a \rangle)$ where $A^* \in \Pi_0^0$, clearly for any degree d, $A \cap d \neq \emptyset \iff A^* \cap d \neq \emptyset$. Then we define B exactly as in the proof of the theorem above and argue again that II cannot have a winning strategy in the game determined by B since B is cofinal. Then I has a winning strategy, since every Σ_n^0 game is determined, so by the argument given there, A contains reals of every Turing degree above the degree of a winning strategy σ for player I.) Using this fact, Martin [2] showed that
\[\text{Determinacy}(\Sigma_n^0) \Rightarrow \text{Turing Determinacy}(\Delta_{n+2}^0) \]
which is best possible in analysis, since he also proved that Analysis $\not\Rightarrow$ Turing Determinacy(Σ_3^0) (see [2]).

3. An application to minimal covers. Using Σ_4^0-determinacy, Jockusch [1] has shown that there is a cone of minimal covers. Harrington noticed that this result follows from our main theorem above (and hence follows from just open determinacy and so, in particular, is a theorem of analysis). This also allows for computing that Kleene’s \mathcal{C} can be taken as a basis of the cone. Here is Harrington’s result.

Theorem. Every Turing degree $\geq \emptyset$ contains a minimal cover.

Proof. By Sacks [6], for every real a, there is a minimal cover of a which is Δ_2^0 in a, uniformly. Thus there is a Π_2^0 predicate $P(a, \beta)$ such that
\[\forall a \forall \beta (P(a, \beta) \rightarrow (\beta \text{ is a minimal cover of } a)) \quad \text{and} \quad \forall a \exists ! \beta P(a, \beta). \]

Now $A = \{ (a, \beta) : P(a, \beta) \}$ is clearly a Π_2^0 set of reals with the property
that every hyperarithmetic real is recursive in some member of it. It is also
a collection of minimal covers. By the theorem in §2 every Turing degree
≥ Θ contains a member of A, thus every Turing degree ≥ Θ is a minimal
cover. Q.E.D.

We conclude with an open problem raised by Jockusch [1]. Is there a
hyperarithmetic real in a cone of minimal covers? In particular, is Θ^ω in
such a cone?

REFERENCES

1. C. G. Jockusch, Jr., An application of Σ^0_4 determinacy to the degrees of

2. D. A. Martin, Two theorems on Turing determinacy, Mimeographed notes,
June 1974.

3. ———, The axiom of determinateness and reduction principles in the ana-

4. Y. N. Moschovakis, Elementary induction in abstract structures, North-Hol-
land, Amsterdam, 1974.

5. H. Rogers, Jr., Theory of recursive functions and effective computability,

6. G. E. Sacks, Degrees of unsolvability, Ann. of Math. Studies, no. 55, Prince-

MR 37 #1224.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT BUFFALO,
AMHERST, NEW YORK 14226

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY,
CAMBRIDGE, MASSACHUSETTS 02139

Current address (Leo A. Harrington): Department of Mathematics, University of
California, Berkeley, California 94720

Current address (Alexander A. Kechris): Department of Mathematics, California
Institute of Technology, Pasadena, California 91125