On paracompact subsets of linear topological spaces
HTML articles powered by AMS MathViewer
- by Richard A. Graff
- Proc. Amer. Math. Soc. 53 (1975), 361-366
- DOI: https://doi.org/10.1090/S0002-9939-1975-0400282-1
- PDF | Request permission
Abstract:
It is shown that a connected open subset of a $\sigma$-compact topological space is paracompact in the relative topology only if the subspace is $\sigma$-compact. An application is made to demonstrate the existence of nonparacompact open subspaces, in the weak-star and bounded weak-star topologies, of the dual to a nonseparable Banach space. As a corollary, nonempty paracompact manifolds modeled on such a space always have open submanifolds which are not paracompact.References
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523 R. Graff, Elements of local nonlinear functional analysis, Ph.D. Thesis, Princeton University, 1972. —, Elements of nonlinear functional analysis (in preparation). R. Heisey, A Lindelöf condition with applications to manifolds and metric spaces (to appear).
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Jean-Paul Penot, Topologie faible sur des variétés de Banach. Application aux géodésiques des variétés de Sobolev, J. Differential Geometry 9 (1974), 141–168 (French). MR 470987
- Kôsaku Yosida, Functional analysis, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag New York, Inc., New York, 1968. MR 0239384
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 361-366
- MSC: Primary 58B05; Secondary 46A05
- DOI: https://doi.org/10.1090/S0002-9939-1975-0400282-1
- MathSciNet review: 0400282