Modular field extensions
HTML articles powered by AMS MathViewer
- by Nickolas Heerema and David Tucker
- Proc. Amer. Math. Soc. 53 (1975), 301-306
- DOI: https://doi.org/10.1090/S0002-9939-1975-0401724-8
- PDF | Request permission
Abstract:
Let $K \supset k$ be fields having characteristic $p \ne 0$. The following is proved. If $K$ is algebraic over $k$ then $K$ is modular over $k$ if and only if $K = S{ \otimes _k}M$ where $S$ is separably algebraic over $k$ and $M$ is purely inseparable, modular. If $K$ is finitely generated over $k$ (not necessarily algebraic), then $K$ is modular over $k$ if and only if $K$ where $M$ is finite, purely inseparable, modular over $k$, and $S$ is a finitely generated, separable, extension of $k$. This leads immediately to the representation $K = (S{ \otimes _k}M){ \otimes _S}R$ where $S$ is finite separable over $k,\;M$ is finite, purely inseparable, modular over $k$ and $R$ is a regular finitely generated extension of $S$, This last representation displays subfields of $K/k$ related to recently obtained Galois theories. The above results are used to analyze transitivity properties of modularity.References
- Stephen U. Chase, On inseparable Galois theory, Bull. Amer. Math. Soc. 77 (1971), 413–417. MR 277504, DOI 10.1090/S0002-9904-1971-12721-0 —, Infinitesimal group scheme actions on finite field extensions (Preprint). R. L. Davis, A Galois theory for a class of purely inseparable field extensions, Dissertation, Florida State University, Tallahassee, Fla., 1969.
- R. L. Davis, A Galois theory for a class of purely inseparable exponent two field extensions, Bull. Amer. Math. Soc. 75 (1969), 1001–1004. MR 244207, DOI 10.1090/S0002-9904-1969-12334-7
- Murray Gerstenhaber and Avigdor Zaromp, On the Galois theory of purely inseparable field extensions, Bull. Amer. Math. Soc. 76 (1970), 1011–1014. MR 266904, DOI 10.1090/S0002-9904-1970-12535-6
- Nickolas Heerema, A Galois theory for inseparable field extensions, Trans. Amer. Math. Soc. 154 (1971), 193–200. MR 269632, DOI 10.1090/S0002-9947-1971-0269632-4
- Nickolas Heerema and James Deveney, Galois theory for fields $K/k$ finitely generated, Trans. Amer. Math. Soc. 189 (1974), 263–274. MR 330124, DOI 10.1090/S0002-9947-1974-0330124-8
- Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871
- H. F. Kreimer and N. Heerema, Modularity vs. separability for field extensions, Canadian J. Math. 27 (1975), no. 5, 1176–1182. MR 392951, DOI 10.4153/CJM-1975-123-2
- Moss Eisenberg Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401–410. MR 223343, DOI 10.2307/1970711
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 301-306
- MSC: Primary 12F15
- DOI: https://doi.org/10.1090/S0002-9939-1975-0401724-8
- MathSciNet review: 0401724