A change of rings theorem and the Artin-Rees property
HTML articles powered by AMS MathViewer
- by M. Boratyński
- Proc. Amer. Math. Soc. 53 (1975), 307-310
- DOI: https://doi.org/10.1090/S0002-9939-1975-0401840-0
- PDF | Request permission
Abstract:
A two-sided ideal $\mathfrak {A}$ of the ring $R$ is said to have the left $AR$ property if for every left ideal $I$ and every $k$ there exists an $n$ such that ${\mathfrak {A}^n} \cap I \subset {\mathfrak {A}^k}I$. Let $R$ be a left noetherian ring and $\mathfrak {A}$ a two-sided ideal contained in its Jacobson radical. If $\mathfrak {A}$ has the $\operatorname {AR}$ property then ${\text {l}}\;{\text {gl}}\;{\text {dim}}\;R \leqslant {\text {p}}\;{\text {dim}}\;R/\mathfrak {A} + {\text {l}}\;{\text {gl dim }}R/\mathfrak {A}$, where ${\text {p}}\;{\text {dim}}\;R/\mathfrak {A}$ denotes the (left) projective dimension of the module $R/\mathfrak {A}$.References
- N. Bourbaki, Éléments de mathématique. 23. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1261, Hermann, Paris, 1958 (French). MR 0098114
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- J. C. McConnell, Localisation in enveloping rings, J. London Math. Soc. 43 (1968), 421–428. MR 228532, DOI 10.1112/jlms/s1-43.1.421
- K. L. Fields, On the global dimension of residue rings, Pacific J. Math. 32 (1970), 345–349. MR 271166, DOI 10.2140/pjm.1970.32.345
- Arun Vinayak Jategaonkar, Injective modules and localization in noncommutative Noetherian rings, Trans. Amer. Math. Soc. 190 (1974), 109–123. MR 349727, DOI 10.1090/S0002-9947-1974-0349727-X
- Y. Nouazé and P. Gabriel, Idéaux premiers de l’algèbre enveloppante d’une algèbre de Lie nilpotente, J. Algebra 6 (1967), 77–99 (French). MR 206064, DOI 10.1016/0021-8693(67)90015-4
- Lance W. Small, A change of rings theorem, Proc. Amer. Math. Soc. 19 (1968), 662–666. MR 223412, DOI 10.1090/S0002-9939-1968-0223412-X
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 307-310
- MSC: Primary 16A60
- DOI: https://doi.org/10.1090/S0002-9939-1975-0401840-0
- MathSciNet review: 0401840