AXIOMATIC SHAPE THEORY

PHILIP BACON

ABSTRACT. The notion of shape theory is so defined that, if \(H \) is a category and \(W \) is a subcategory of \(H \), all shape theories on \((H, W)\) are isomorphic and, under a mild condition, a shape theory on \((H, W)\) always exists. Additional theorems facilitate the comparison of shape theories constructed by various means.

1. The recent proliferation of shape theories ([1], [3], [5], [7], [8], [9], [11]) suggests the desirability of a unified treatment of their common features. This note is primarily a study of aspects of shape theory that can be dealt with in terms of category theory; many of our definitions and theorems contain no topology.

If \(A \) is a category, \(X \in A \) will mean that \(X \) is an object of \(A \) and \(f \in A(X, Y) \) will mean that \(f \) is a morphism of \(A \) with domain \(X \) and codomain \(Y \). If \(X \in A \), \(AX \) will denote the identity morphism in \(A(X, X) \). If \(B \) is a subcategory of \(A \) and \(X \in A \), let \(A(X, B) \) denote the class of morphisms of \(A \) with domain \(X \) and codomain an object of \(B \): \(A(X, B) = \bigcup_{Q \in B} A(X, Q) \). Throughout §§2—4, let \(H \) be a category and \(W \) a subcategory of \(H \). For example, \(H \) could be the category of topological spaces and homotopy classes and \(W \) could be the category of polyhedra and homotopy classes.

2. This section deals with the definition, existence and uniqueness of shape theories. Suppose \(G \) is a category and \(T: H \to G \) is a functor. A function \(v: H(X, W) \to G(D, G) \) is said to be linked by \(T \) if the following conditions hold:

\[(L1) \] If \(Q \in W \) and \(k \in H(X, Q) \), then \(vk \in G(D, TQ) \).

\[(L2) \] If \(r \in W(Q, P) \) and \(k \in H(X, Q) \), then \(v(rk) = (Tr)(vk) \).

(If \(H(X, W) \) and \(G(D, G) \) are endowed with the structure of a comma category [4, p. 28], then \(v \) is a functor.) If \(X \in H \), we say \(T \) is \(W \)-continuous at \(X \) if, given any \(D \in G \) and any function \(v: H(X, W) \to G(D, G) \) linked by \(T \), there is a unique \(g \in G(D, TX) \) such that \((TK)g = vk \) whenever \(k \in H(X, W) \). \(T \) is \(W \)-continuous if it is \(W \)-continuous at each object \(X \) of \(H \).

A pair \((C, C)\) is a shape theory on \((H, W)\) if \(C \) is a category and \(C: H \to C \) is a functor satisfying the following conditions:

\[(S1) \] The objects of \(C \) are the objects of \(H \); if \(X \in H \), \(CX = X \).

Presented to the Society, August 16, 1974; received by the editors June 21, 1974 and, in revised form, October 14, 1974.

Copyright © 1975, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

489
(S2) If \(Q \in W \) and \(s \in C(\lambda, Q) \), then there is just one \(k \in H(\lambda, \lambda) \) such that \(Ck = s \).

(S3) \(C \) is \(W \)-continuous.

A similar definition has been given by Holsztyński [5].

Suppose \((H, W)\) has the property that, if \(X \in H \), there is a set \(J \) of objects of \(W \) such that any morphism from \(X \) to an object of \(W \) factors through an object in \(J \). Then there is a shape theory on \((H, W)\). To see this, define a category \(S \) and a functor \(S: H \to S \) by the method of Holsztyński [5, p. 161, §4] (see also [7] and [8]). The objects of \(S \) are the objects of \(H \); if \(X \in H \), \(SX = X \). \(S(X, Y) \) is the class of functions \(v: H(Y, W) \to H(X, H) \) linked by the identity functor on \(H \). (The hypothesis on \((H, W)\) insures that the class \(S(X, Y) \) is a set.) If \(v \in S(X, Y) \) and \(u \in S(Y, Z) \), the composition \(uv \in S(X, X) \) is defined by \((uv)k = v(uk) \) whenever \(k \in H(Z, W) \). If \(f \in H(X, Y) \), \((Sf)k = kf \) whenever \(k \in H(Y, W) \).

Theorem 2.1. \((S, S)\) is a shape theory on \((H, W)\).

Proof. To verify (S2) suppose \(Q \in W \) and \(b \in S(Z, Q) \). If \(r \in H(Q, W) \), then \((S(b(\lambda Q)))r = r(b(\lambda Q)) = br \). Hence

\[
S(b(\lambda Q)) = b.
\]

To see that \(b(\lambda Q) \) is unique, suppose \(c \in H(X, \lambda Q) \) and \(Sc = b \). Then \(c = (\lambda Q)c = (Sc)(\lambda Q) = b(\lambda Q) \).

To verify (S3), suppose \(v: H(X, W) \to S(Z, S) \) is a function linked by \(S \). If \(k \in H(X, W) \), by (S2) there is a unique \(gk \in H(Z, W) \) such that \(S(gk) = vk \). This defines a function \(g: H(X, W) \to H(X, H) \) that satisfies (L1). Suppose \(r \in W(Q, P) \) and \(k \in H(X, \lambda Q) \). Then

\[
S(g(rk)) = v(rk) = (Sr)(vk) = (Sr)(S(gk)) = S(r(gk)).
\]

By (S2), \(g(rk) = r(gk) \). Thus \(g \) satisfies (L2) as well as (L1), that is, \(g \in S(Z, X) \).

Next we show that \((Sk)g = vk \) whenever \(k \in H(X, W) \). Suppose \(Q \in W \) and \(k \in H(X, \lambda Q) \). If \(P \in W \) and \(r \in H(\lambda Q, P) \), then

\[
S(((Sk)g)r) = S(g(((Sk)r)r)) = S((Sk)g) = S((Sk)r) = S(g(rk)) = v(rk) = (Sr)(vk) = (Sr)(S((vk)(\lambda Q))) = S(r((vk)(\lambda Q))) = S((vk)r). \]

By (S2), \(((Sk)g)r = ((Sk)r) \). Hence \((Sk)g = vk \).
Suppose \(f \in S(Z, X) \) and \((Sk)f = \nu k \) whenever \(k \in H(X, W) \). If \(r \in W(Q, P) \) and \(k \in H(X, Q) \), then
\[
(S(fk)r) = r(fk) = f((Sk)r) = ((Sk)f)r.
\]
So \(S(fk) = (Sk)f = \nu k = S(gk) \). By (S2), \(fk = gk \). Hence \(f = g \).

Theorem 2.2. Suppose \(C \) is a category and \(C : H \to C \) is a functor satisfying (S1) and (S2). If \(G \) is a category and \(T : H \to G \) is a \(W \)-continuous functor, then there is just one functor \(R : C \to G \) such that \(RC = T \).

Proof. If \(X \in C \), define \(RX = TX \). Suppose \(f \in C(X, Y) \). If \(Q \in W \) and \(k \in H(Y, Q) \), let \(u.k \in H(X, Q) \) be the unique morphism such that \(C(u.k) = (Ck)f \). This defines a function \(u : H(Y, W) \to H(X, H) \) satisfying (L1). If \(r \in W(g, P) \) and \(\gamma \in H(y, 2) \), then
\[
C(r(B/*)) = (CrKCOyl)) = (Cr)iCk)f = (Cu))/ = Cda/rA)).
\]
By (S2), \(r(uk) = u,(rk) \), that is, \(u \) satisfies (L2). Define \(v : H(Y, W) \to G(TX, G) \) by \(v.k = T(u.k) \). Since \(u \) is linked by the identity, \(v \) is linked by \(T \). Since \(T \) is \(W \)-continuous at \(T \), there is a unique \(Rf \in G(TX, TY) \) such that \((Tk)(Rf) = v.k \) whenever \(k \in H(Y, W) \).

If \(Y = X \) and \(f = CX \), then \(k = u.k \) and \((Tk)(G(RX)) = Tk = v.k = (Tk)(Rf) \) whenever \(k \in H(X, W) \). Since \(T \) is \(W \)-continuous at \(X \), \(G(RX) = Rf \).

Suppose \(f \in C(X, Y) \) and \(g \in C(Y, Z) \). If \(k \in H(Z, W) \), then
\[
C(u.g.k) = (Ck)gf = (Ck)(u.g)k = C(u.g.k).
\]
By (S2), \(u.g.k = u(u.g.k) \). Using this we compute
\[
(Tk)(R(g/f)) = v.g/k = T(u.g/k) = T(u.g.k) = v.g/k = T(v.g/k) = (Tk)(Rg)(Rf).
\]
Since \(T \) is \(W \)-continuous at \(Z \), \(R(g/f) = (Rg)(Rf) \). Thus \(R \) is a functor.

If \(f \in H(X, Y) \) and \(k \in H(Y, W) \), then \(C(u.cf.k) = (Ck)(Cf) = C(cf) \). By (S2), \(u.cf.k = kf \). Hence
\[
(Tk)(R(cf)) = v.cf/k = T(u.cf/k) = T(cf) = (Tk)(Tf).
\]
Since \(T \) is \(W \)-continuous at \(Y \), \(R(cf) = Tf \). Thus \(RC = T \).

Suppose \(R' : C \to G \) is a functor such that \(R'C = T \). If \(f \in C(X, Y) \) and \(k \in H(Y, W) \), then
\[
(Tk)(R'/f) = ((R'C)k)(R'/f) = R'(Ck)f = R'(C(u.k)) = T(u.k) = v/k = (Tk)(Rf).
\]
Since \(T \) is \(W \)-continuous at \(Y \), \(R'/f = Rf \). Thus \(R' = R \). This completes the proof of Theorem 2.2.

A functor \(R : C \to D \) is called an **isomorphism** if there is a functor \(R \) such that \(R' \) is an isomorphic functor to \(R \).
$P: D \to C$ such that RP and PR are identity functors. A fourfold application of Theorem 2.2 proves

Theorem 2.3. If each of (C, C) and (D, D) is a shape theory on $(\mathcal{H}, \mathcal{W})$, then there is a unique isomorphism $R: C \to D$ such that $RC = D$.

3. Throughout this section assume that N is a subcategory of \mathcal{W}. We shall develop conditions under which a pair (C, C) is a shape theory on both $(\mathcal{H}, \mathcal{W})$ and $(\mathcal{H}, \mathcal{N})$.

Lemma 3.1. If $T: \mathcal{H} \to \mathcal{G}$ is an \mathcal{N}-continuous functor, then T is \mathcal{W}-continuous.

Proof. Suppose $\nu: \mathcal{H}(X, \mathcal{W}) \to \mathcal{G}(D, \mathcal{G})$ is linked by T. Let $u: \mathcal{H}(X, \mathcal{N}) \to \mathcal{G}(D, \mathcal{G})$ be the restriction of ν; u is linked by T. Since T is \mathcal{N}-continuous at X, there is a $g \in \mathcal{G}(D, TX)$ such that, whenever $k \in \mathcal{H}(X, \mathcal{N})$, $(Tk)g = uk$.

Suppose $Q \in \mathcal{W}$ and $k \in \mathcal{H}(X, Q)$. If $r \in \mathcal{H}(Q, \mathcal{N})$, then

$$(Tr)(Tk)g = (T(rk))g = u(rk) = \nu(rk) = (Tr)(uk).$$

Since T is \mathcal{N}-continuous at Q, $(Tk)g = uk$.

Suppose $f \in \mathcal{G}(D, TX)$ and $(Tk)f = uk$ whenever $k \in \mathcal{H}(X, \mathcal{W})$. Then, in particular, $(Tk)f = uk$ whenever $k \in \mathcal{H}(X, \mathcal{N})$. Since T is \mathcal{N}-continuous at X, $f = g$. Thus T is \mathcal{W}-continuous and Lemma 3.1 is proved.

An object V of \mathcal{H} is said to dominate an object X of \mathcal{H} if there exist morphisms $i \in \mathcal{H}(X, Y)$ and $j \in \mathcal{H}(Y, X)$ such that $ji = 1_X$.

Lemma 3.2. If \mathcal{N} is full in \mathcal{H}, if every object of \mathcal{W} is dominated by an object of \mathcal{N}, if $X \in \mathcal{H}$, and if $T: \mathcal{H} \to \mathcal{G}$ is a functor \mathcal{W}-continuous at X, then T is \mathcal{N}-continuous at X.

Proof. Suppose $\nu: \mathcal{H}(X, \mathcal{N}) \to \mathcal{G}(D, \mathcal{G})$ is linked by T. If $Q \in \mathcal{W}$, let $M_Q \in \mathcal{N}$, $i_Q \in \mathcal{H}(Q, M_Q)$ and $j_Q \in \mathcal{H}(M_Q, Q)$ be such that $j_Q i_Q = HQ$. In particular, if $Q \in \mathcal{N}$, choose $M_Q = Q$ and $i_Q = j_Q = HQ$. If $k \in \mathcal{H}(X, Q)$, define $uk = (Tj_Q)(\nu(i_Qk))$. If $r \in \mathcal{W}(Q, \mathcal{P})$ and $k \in \mathcal{H}(X, Q)$, then

$$u(rk) = (Tj_P)(\nu(i_Prj_Qi_Qk)) = (Tj_P)(T(i_Prj_Q)(\nu(i_Qk))) = (Tr)(Tj_Q)(\nu(i_Qk)) = (Tr)(uk).$$

Thus the function $u: \mathcal{H}(X, \mathcal{W}) \to \mathcal{G}(D, \mathcal{G})$ is linked by T. Since T is \mathcal{W}-continuous at X, there is a unique $g \in \mathcal{G}(D, TX)$ such that $(Tk)g = uk$ whenever $k \in \mathcal{H}(X, \mathcal{W})$. Since u is an extension of ν, $(Tk)g = uk$ whenever $k \in \mathcal{H}(X, \mathcal{N})$. Suppose $f \in \mathcal{G}(D, TX)$ and $(Tk)f = uk$ whenever $x \in \mathcal{H}(X, \mathcal{N})$. If $Q \in \mathcal{W}$ and $k \in \mathcal{H}(X, Q)$, then $(Tk)f = (Tj_Q)(T(i_Qk))f = (Tj_Q)(\nu(i_Qk)) = uk$. Since T is \mathcal{W}-continuous at X, $f = g$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 3.3. Suppose \mathbf{N} is full in \mathbf{W}, each object of \mathbf{W} is dominated by an object of \mathbf{N}, and $C: H \to \mathbf{C}$ is a functor. Then (\mathbf{C}, \mathbf{C}) is a shape theory on (H, W) if and only if (\mathbf{C}, \mathbf{C}) is a shape theory on (H, N).

Proof. Suppose (\mathbf{C}, \mathbf{C}) is a shape theory on (H, N). By Lemma 3.1, \mathbf{C} is \mathbf{W}-continuous. Suppose $Q \in \mathbf{W}$ and $s \in C(X, Q)$. Let $M \in \mathbf{N}$, $x \in H(M, Q)$ be such that $c = \mathbf{C}x$. There is a unique $f \in H(X, M)$ such that $Cf = (Cn)s$. Then $Cf(x) = (Cn)(Cf) = (Cn)(Cn) = s$. Suppose $g \in H(X, Q)$ is such that $Cg = s$. Then $Cg = (Cn)(Cg) = (Cn)s = Cn$. Since (\mathbf{C}, \mathbf{C}) satisfies (S2) as a shape theory on (H, N), $ig = f$. Consequently $g = jg = jf$. Thus (\mathbf{C}, \mathbf{C}) satisfies (S2) as a shape theory on (H, W).

By Lemma 3.2 any shape theory on (H, W) is a shape theory on (H, N).

4. In this section we suppose that \mathbf{G} is a category, $T: H \to \mathbf{G}$ is a functor, $X \in H$, A is a directed set, and $\{X_i \in H \mid i \in A\}$, $\{p_{ij} \in H(X_j, X_i) \mid i, j \in A, j > i\}$, $\{\rho_i \in H(X_i, X_j) \mid i \in A\}$ are such that the following conditions hold:

(B1) $\{\{X_i\}, \{p_{ij}\}\}$ is an inverse system.

(B2) $p_{ij}p_{ji} = p_i$ whenever $i, j \in A$ and $j > i$.

(B3) If $Q \in \mathbf{W}$ and $k \in H(X, Q)$, then there is an $i \in A$ and a $b \in H(X, Q)$ such that $k = bp_i$.

Theorem 4.1. If each X_i is in \mathbf{W}, if each p_{ij} is in $\mathbf{W}(X_j, X_i)$ and if $(TX, \{T\rho_{ij}\})$ is an inverse limit of $\{(TX_i), \{T\rho_{ij}\}\}$, then T is \mathbf{W}-continuous at X.

Proof. Suppose $D \in \mathbf{G}$ and $v: H(X, W) \to G(D, \mathbf{G})$ is linked by T. For each $i \in A$, let $g_i = v\rho_i$. If $j > i$, $p_{ij}g_j = p_{ij}(v\rho_i) = v(p_{ij}\rho_i) = g_i$. By the definition of inverse limit, there is a unique $g \in G(D, TX)$ such that $(T\rho_{ij})g = g_i$ whenever $i \in A$. Suppose $Q \in \mathbf{W}$ and $k \in H(X, Q)$. By (B3) there is an $i \in A$ and a $b \in H(X, Q)$ such that $k = bp_i$. Hence

$$(Tk)g = (Tb)(T\rho_{ij})g = (Tb)(v\rho_i) = v(bp_i) = vk.$$

Suppose $f \in G(D, TX)$ and $(Tk)f = vk$ whenever $k \in H(X, W)$. Then, in particular, $(T\rho_{ij})f = g_i$ whenever $i \in A$. By the definition of inverse limit $f = g$.

Theorem 4.2. Suppose that, whenever $Q \in \mathbf{W}$, $i, j \in A$, $k_i \in H(X_i, Q)$ ($i = 1, 2$), and $k_{1p} = k_{2p}$, there is a $j > i$ such that $k_{1p_{ij}} = k_{2p_{ij}}$. If T is \mathbf{W}-continuous, then $(TX, \{T\rho_{ij}\})$ is an inverse limit of $\{(TX_i), \{T\rho_{ij}\}\}$.

Proof. Suppose $\{g_i \in G(D, TX_i) \mid i \in A\}$ is such that $(T\rho_{ij})g_j = g_i$ whenever $i, j \in A$ and $j > i$. We must show that there is just one $g \in G(D, TX)$ such that $(T\rho_{ij})g = g_i$ whenever $i \in A$.

If $Q \in \mathbf{W}$ and $k \in H(X, Q)$, then, by (B3), there is an $m(k) \in A$ and a $b \in H(X_m(k), Q)$ such that $k = b_kp_{m(k)}$. Define $vk = (T\rho_{ij})g_{m(k)}$. Suppose $r \in W(Q, P)$ and $k \in H(X, Q)$. Let $i > m(k), m(k)$. Then
\[rb_k p_{m(k)} p_{ij} = rb_k p_{m(k)} = rk = b_{rk} p_{m(rk)} = b_{rk} p_{m(rk)} p_{ij}. \]

By hypothesis there is a \(j > i \) such that \(rb_k p_{m(k)} p_{ij} = b_{rk} p_{m(rk)} p_{ij} \), which simplifies to \(rb_k p_{m(k)} p_{ij} = b_{rk} p_{m(rk)} p_{ij} \). Using this we compute

\[
(Tr)(vk) = (Tr)(Tb_k) g_{m(k)} = (Tr)(Tb_k) g_{m(k)} g_j = (Tb_k) g_{m(k)} = \nu(rk).
\]

Thus \(\nu: H(X, W) \to G(D, G) \) is linked by \(T \). Since \(T \) is \(W \)-continuous at \(X \), there is a unique \(g \) in \(G(D, TX) \) such that \((Tk)g = \nu k \) whenever \(k \in H(X, W) \).

Suppose \(a \in A, Q \in W \) and \(k \in H(x_a, Q) \). Define \(e = k p_a \). Choose \(i > a, m(e) \). Then

\[k p_a p_{ij} = b e p_{m(e)} = b e p_{m(e)} p_{ij}. \]

By hypothesis there is a \(j > i \) such that \(k p_a p_{ij} = b e p_{m(e)} p_{ij} \), which simplifies to \(k p_a p_{ij} = b e p_{m(e)} p_{ij} \). Using this we compute

\[
(Tk)(TP_{p_a}) g = (Te) g = (b e)(TP_{m(e)}) g_j = (Tk)(TP_{p_a}) g_j = (k) g_a.
\]

Since \(T \) is \(W \)-continuous at \(X_a \), \((TP_{p_a}) g = g_a \).

Suppose \(f \in G(D, TX) \) and \((TP_{p_a}) f = g_a \) whenever \(a \in A \). If \(k \in H(X, W) \), then

\[
(Tk)f = (Tb_k)(TP_{m(k)}) f = (Tb_k) g_{m(k)} = \nu k.
\]

Since \(T \) is \(W \)-continuous at \(X, f = g \).

5. This section contains an application of the theorems of §4. Let \(M \) be a full subcategory of the category of topological spaces and homotopy classes. If \(X, Y \in M \) and \(X \subset Y \), let \(i_YX \in M(X, Y) \) denote the homotopy class of the inclusion map and let \(\text{Nbd}(Y, X) \) denote the set of all \(N \in M \) such that \(X \subset \text{Int} N \) and \(N \subset Y \). A functor \(T \) from \(M \) to an arbitrary category \(G \) is called weakly continuous if, given \(X, Y \in M \) with \(X \) a closed subspace of \(Y \), \((TX, \{Ti_{NX} | N \in \text{Nbd}(Y, X)\}) \) is an inverse limit of

\[
(\{TN | N \in \text{Nbd}(Y, X)\}, \{Ti_{LN} | L, N \in \text{Nbd}(Y, X), N \subset L\}).
\]

Let \(E \) be the full subcategory of \(M \) whose objects are those spaces in \(M \) that are neighborhood extensors for \(M \). We suppose that \(M \) satisfies the following conditions:

(A1) If \(X \in M \), then \(X \times I \in M \) (where \(I = [0, 1] \)).

(A2) If \(X, Y \in M \), if \(X \) is a closed subset of \(Y \), and if \(U \) is a neighborhood of \(X \), then there is a neighborhood \(N \) of \(X \) such that \(N \subset U \) and \(N \in M \).

(A3) If \(X \in M \), there is a \(Y \in M \) such that \(X \) is a closed subspace of \(Y \) and, given any neighborhood \(N \) of \(X \), there is a neighborhood \(N \) of \(X \) such that \(N \subset U \) and \(N \in E \).
Lemma 5.1. Suppose \(X, Y \in M \), \(X \) is a closed subspace of \(Y \), \(Q \in E \), \(L \in \text{Nbd}(Y, X) \), \(h_t \in M(L, Q) \) \((t = 0, 1)\) and \(h_0^i \text{LN} = h_1^i \text{LN} \). Then there is an \(N \) in \(\text{Nbd}(Y, X) \) such that \(N \subseteq L \) and \(h_0^i \text{LN} = h_1^i \text{LN} \).

Proof. Let \(f_i : L \rightarrow Q \) be a map in the homotopy class \(h_t \) \((t = 0, 1)\).
Since \(h_0^i \text{LN} = h_1^i \text{LN} \), there is a map \(m : X \times I \rightarrow Q \) such that \(m(x, t) = f_t x \) whenever \((x, t) \in X \times \{0, 1\}\). Let \(Z = X \times I \cup L \times \{0, 1\}; Z \) is a closed subspace of \(L \times I \). Define a map \(k : Z \rightarrow Q \) by \(k(x, t) = m(x, t) \) when \((x, t) \in X \times I; k(x, t) = f_t x \) when \((x, t) \in L \times \{0, 1\}\). Since \(Q \in E \), there is a neighborhood \(B \) of \(Z \) and an extension of \(k \) to a map \(j : B \rightarrow Q \). There is a neighborhood \(D \) of \(X \) such that \(D \times I \subseteq B \). By (A2) there is a neighborhood \(N \) of \(X \) such that \(N \subseteq D \) and \(N \in M \). The restriction of \(j \) to \(N \times I \) is a homotopy from \(f_0 | N \) to \(f_1 | N \). So \(h_0^i \text{LN} = h_1^i \text{LN} \).

Theorem 5.2. If \(G \) is a category and \(T : M \rightarrow G \) is a functor, then the following are equivalent:

1. \(T \) is weakly continuous.
2. \(T \) is \(E \)-continuous.

Proof that (1) implies (2). Suppose \(T \) is weakly continuous and \(X \in M \).
By (A3), \(X \) may be regarded as a closed subspace of a space \(Y \in M \) such that \(\text{Nbd}(Y, X) \) contains a cofinal subcollection \(\{X_i | i \in A\} \) of spaces in \(E \).
Since \(T \) is weakly continuous, \(TX \) is an inverse limit of \(\{TX_i | i \in A\} \). By (A2) and the definition of neighborhood extensor (B3) holds. By Theorem 4.1, \(T \) is \(E \)-continuous at \(X \).

Proof that (2) implies (1). Suppose \(T \) is \(E \)-continuous and \(X, Y \in M \) with \(X \) a closed subspace of \(Y \). By Lemma 5.1 and Theorem 4.2, \(TX \) is an inverse limit of \(\{TN | N \in \text{Nbd}(Y, X)\} \).

Theorem 5.2 shows that weak continuity can be used instead of \(E \)-continuity in our axioms for a shape theory on \((M, E)\). The category of metrizable spaces and homotopy classes furnishes an example of a category satisfying (A1)–(A3). (A3) holds because every metrizable space is embeddable as a closed set in a normed linear space \([10] \), every normed linear space is an extensor for metrizable spaces \([2, p. 188, Theorem 6.1] \), and open subsets of neighborhood extensors are neighborhood extensors \([6, p. 42, Proposition 6.1] \).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611