A NOTE ON CONTINUITY OF SEMIGROUPS OF MAPS

PAUL R. CHERNOFF

ABSTRACT. An example is given of a separately continuous semi-
group of transformations on Hilbert space which fails to be jointly con-
tinuous at \(t = 0 \).

1. Let \(X \) be a topological space and \(\{ F_t : t \geq 0 \} \) a one-parameter semi-
group of continuous maps of \(X \) into itself; that is, \(F_{s+t} = F_s \circ F_t \) and
\(F_0 = \text{identity} \). Suppose also that for each \(x \) in \(X \) the mapping \(\langle t, x \rangle \mapsto F_t(x) \) is
continuous. Thus \(\langle t, x \rangle \mapsto F_t(x) \) is continuous in each variable separately.
Under additional hypotheses we can conclude that this map is jointly con-
tinuous. Specifically, in \([1]\) it is shown that if \(X \) is metrizable, then every
point \((t, x) \) with \(t > 0 \) is a point of joint continuity. Moreover, Dorroh \([2]\)
has shown that if \(X \) is locally compact and \(\sigma \)-compact then every point
\((t, x) \), including points with \(t = 0 \), is a point of joint continuity.

On the other hand, it was stated in \([1]\) that there is an example for
which joint continuity fails at \(t = 0 \), with \(X \) a certain subset of \(\mathbb{R}^2 \). (There
is a misprint in \([1]\) on p. 1046; it is erroneously stated that such an exam-
ple exists with \(X = \mathbb{R}^2 \). This is, of course, ruled out by Dorroh's result.)

The aim of this note is to present an example illustrating failure of
joint continuity at \(t = 0 \) with \(X \) a Hilbert space. Thus Dorroh's result does
not generalize from finite-dimensional to infinite-dimensional manifolds.

2. Before giving the construction, it seems worthwhile to present a
proof of joint continuity at \(t = 0 \) which is substantially more elementary than
Dorroh's argument. We shall assume that the space \(X \) is locally compact
and metrizable (rather than locally compact and \(\sigma \)-compact as in \([2]\)).

Suppose that \(\{ F_t : t \geq 0 \} \) is a separately continuous semigroup of maps
on \(X \). By \([1]\) we have joint continuity for \(t > 0 \). We must establish joint
continuity at \(t = 0 \). That is, given \(x \) in \(X \) and sequences \(x_n \rightarrow x \), \(t_n \rightarrow 0 \),
we have to show that \(F_{t_n}(x_n) \rightarrow x \). If this is not the case, then there is a
compact neighborhood \(K \) of \(x \) such that \(F_{t_n}(x_n) \not\in K \) for arbitrarily large \(n \).
Since \(x_n \rightarrow x \), we may as well assume that \(x_n \in K \), but \(F_{t_n}(x_n) \not\in K \), for all
\(n \). But then, because \(F_t(x_n) \) is continuous in \(t \), a connectedness argument

Received by the editors December 14, 1974.
AMS (MOS) subject classifications (1970). Primary 20M20, 54H15; Secondary
57A20.

1 Research partially supported by NSF grant GP-30798X.

Copyright © 1975, American Mathematical Society
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

318
shows that \(F_{s_n}(x_n) \) lies on the boundary \(B \) of \(K \) for some \(s_n \) between 0 and \(t_n \). Since \(B \) is compact, we may assume that \(F_{s_n}(x_n) \) converges to a point \(y \) in \(B \). Now observe that if \(t > 0 \),

\[
F_t(y) = \lim_{n \to \infty} F_{t+s_n}(x_n) = \lim_{n \to \infty} F_{t+s_n}(x_n) = F_t(x),
\]

where joint continuity at \((t, x)\) is used at the last step. If we finally let \(t \) converge to 0 in (1), we conclude that \(y = x \). But this is a contradiction, since \(x \) is in the interior of \(K \).

3. To prepare the ground for the construction of the Hilbert space example, we will exhibit the example on the subset of \(R^2 \) which we mentioned above.

We define the subset \(X \) as follows. Let \(p \) be the point \((1, 0)\). Introducing polar coordinates in the usual way, let \(\Delta = \{(r, \theta): r > 1, 0 < \theta < 2\pi\} \). Then let \(X = \Delta \cup \{p\} \). (Thus \(X \) is obtained from \(K \) by deleting the positive x-axis and the closed unit disk, then restoring the point \(p \). Note that \(X \) is locally compact except at \(p \).)

Define \(h(\theta) = \theta/(2\pi - \theta) \). The function \(h \) maps the interval \((0, 2\pi)\) homeomorphically onto \((0, \infty)\).

Now, for \(t \geq 0 \), define the map \(F_t: X \to X \) in the following way. Set \(F_t(p) = p \); and if \(r > 1 \), put \(F_t(r, \theta) = (r, h^{-1}[h(\theta) + t/(r - 1)]) \). It is straightforward to check that \(\{F_t: t \geq 0\} \) is a semigroup. (Roughly speaking, the flow \(F_t \) makes the circular arc with radius \(r > 1 \) collapse in a counterclockwise sense with increasing velocity as \(r \to 1 \).) To see that \(F_t \) is continuous for fixed \(t > 0 \), it is only necessary to worry about what happens at the point \(p \). So let \(x_n = (r_n, \theta_n) \) with \(r_n \to 1 \), \(\theta_n \to 0 \) or \(2\pi \). Then \(h(\theta_n) + t/(r_n - 1) \to \infty \), and so \(h^{-1}[h(\theta_n) + t/(r_n - 1)] \to 2\pi \). Hence, \(F_t(r_n, \theta_n) \to (1, 2\pi) = p = F_t(p) \). If \(t = 0 \), \(F_t = \) identity. Also, it is clear that \(F_t(x) \) is continuous in \(t \) for fixed \(x \) in \(X \).

Finally, we verify the failure of joint continuity at \(p \) with \(t = 0 \). Take \(x_n = (r_n, \theta_n) \) with \(r_n = 1 + 1/n \) and \(\theta_n = 1/n \). Take \(t_n = 1/n \). Then \(x_n \to p \) and \(t_n \to 0 \), but

\[
F_{t_n}(x_n) = (r_n, h^{-1}[h(1/n) + 1]) \to (1, h^{-1}(1)) = (1, n) \neq p.
\]

We can now obtain an example on an open subset of Hilbert space quite cheaply (modulo infinite-dimensional topology!). Indeed, let \(H \) be a separable, infinite-dimensional Hilbert space. The space \(X \) considered above is easily seen to be a locally finite-dimensional simplicial complex; that is, the two-dimensional space \(X \) can be triangulated and homeomorphically embedded as a piecewise linear subset of \(H \) so that the vertices of the triangulation
correspond to mutually orthogonal unit vectors. Hence, by [5, Theorem 3], the product space $X \times H$ is a manifold modelled on H. By the results in [3], $X \times H$ is homeomorphic to an open subset of H. We then simply take as our semigroup on $X \times H$ the maps $G_t = F_t \times I$.

The referee has observed that a simple modification of this construction yields a semigroup acting on the whole space H. Consider the metric cone C of X: if X is embedded as a piecewise linear subset of H, then C is the subset of $H \times \mathbb{R}$ consisting of the points $(\lambda x, 1 - \lambda)$ with $x \in X$ and $0 \leq \lambda \leq 1$. The semigroup F_t extends in the obvious way to C: we define $F'_t(\lambda x, 1 - \lambda) = (\lambda F_t(x), 1 - \lambda)$. Then $F'_t \times I$ is the desired semigroup on $C \times H$. The point is that C is a contractible locally finite-dimensional simplicial complex, and so, by [3, Corollary 3], $C \times H$ is homeomorphic to H.

Acknowledgement. I wish to thank Professor Victor Klee for some interesting correspondence concerning the proof that $X \times H$ is homeomorphic to an open subset of H. In particular, Klee has shown that this can be obtained via the machinery developed in [4].

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720