A note on continuity of semigroups of maps
HTML articles powered by AMS MathViewer
- by Paul R. Chernoff
- Proc. Amer. Math. Soc. 53 (1975), 318-320
- DOI: https://doi.org/10.1090/S0002-9939-1975-0448406-4
- PDF | Request permission
Abstract:
An example is given of a separately continuous semigroup of transformations on Hilbert space which fails to be jointly continuous at $t = 0$.References
- P. Chernoff and J. Marsden, On continuity and smoothness of group actions, Bull. Amer. Math. Soc. 76 (1970), 1044–1049. MR 265510, DOI 10.1090/S0002-9904-1970-12552-6
- J. R. Dorroh, Semi-groups of maps in a locally compact space, Canadian J. Math. 19 (1967), 688–696. MR 229203, DOI 10.4153/CJM-1967-063-3
- David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25–33. MR 250342, DOI 10.1016/0040-9383(70)90046-7
- Victor L. Klee Jr., Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10–43. MR 54850, DOI 10.1090/S0002-9947-1953-0054850-X
- James E. West, Products of complexes and Fréchet spaces which are manifolds, Trans. Amer. Math. Soc. 166 (1972), 317–337. MR 293679, DOI 10.1090/S0002-9947-1972-0293679-6
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 318-320
- MSC: Primary 58D99; Secondary 47D05
- DOI: https://doi.org/10.1090/S0002-9939-1975-0448406-4
- MathSciNet review: 0448406