Epimorphisms in the category of abelian $l$-groups
HTML articles powered by AMS MathViewer
- by F. D. Pedersen
- Proc. Amer. Math. Soc. 53 (1975), 311-317
- DOI: https://doi.org/10.1090/S0002-9939-1975-0574094-2
- PDF | Request permission
Abstract:
By choosing the mappings for a category of $l$-groups carefully, some significant categorical results are obtainable. The intent of this paper is to investigate the reasons why epimorphisms in the category of $l$-homomorphisms between abelian $l$-groups are not βontoβ functions.References
- Paul Conrad, Archimedean extensions of lattice-ordered groups, J. Indian Math. Soc. (N.S.) 30 (1966), 131β160 (1967). MR 224519
- Paul Conrad, The essential closure of an Archimedean lattice-ordered group, Duke Math. J. 38 (1971), 151β160. MR 277457
- Paul Conrad, John Harvey, and Charles Holland, The Hahn embedding theorem for abelian lattice-ordered groups, Trans. Amer. Math. Soc. 108 (1963), 143β169. MR 151534, DOI 10.1090/S0002-9947-1963-0151534-0
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- David M. Topping, Some homological pathology in vector lattices, Canadian J. Math. 17 (1965), 411β428. MR 174499, DOI 10.4153/CJM-1965-042-2
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 53 (1975), 311-317
- MSC: Primary 18E10; Secondary 06A60
- DOI: https://doi.org/10.1090/S0002-9939-1975-0574094-2
- MathSciNet review: 0574094