Completely decomposable flat modules over locally factorial domains
HTML articles powered by AMS MathViewer
- by E. L. Lady
- Proc. Amer. Math. Soc. 54 (1976), 27-31
- DOI: https://doi.org/10.1090/S0002-9939-1976-0387265-6
- PDF | Request permission
Abstract:
Rank $1$ flat modules are classified for a locally factorial noetherian domain by extending the concept of divisor. A direct sum of rank one flat modules in called completely decomposable. A summand of a completely decomposable module is a direct sum of homogeneous components but need not be completely decomposable.References
- D. M. Arnold and E. L. Lady, Endomorphism rings and direct sums of torsion free abelian groups, Trans. Amer. Math. Soc. 211 (1975), 225–237. MR 417314, DOI 10.1090/S0002-9947-1975-0417314-1 N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
- Robert M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Springer-Verlag, New York-Heidelberg, 1973. MR 0382254
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- Irving Kaplansky, Commutative rings, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0345945
- Daniel Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81–128 (French). MR 254100
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 27-31
- DOI: https://doi.org/10.1090/S0002-9939-1976-0387265-6
- MathSciNet review: 0387265