Maximal ideal transforms of Noetherian rings
HTML articles powered by AMS MathViewer
- by Jacob R. Matijevic
- Proc. Amer. Math. Soc. 54 (1976), 49-52
- DOI: https://doi.org/10.1090/S0002-9939-1976-0387269-3
- PDF | Request permission
Abstract:
Let $R$ be a commutative Noetherian ring with unit. Let $T$ be the set of all elements of the total quotient ring of $R$ whose conductor to $R$ contains a power of a finite product of maximal ideals of $R$. If $A$ is any ring such that $R \subset A \subset T$, then $A/xA$ is a finite $R$ module for any non-zero-divisor $x$ in $R$. It follows that if, in addition, $R$ has no nonzero nilpotent elements, then any ring $A$ such that $R \subset A \subset T$ is Noetherian.References
- Daniel Ferrand and Michel Raynaud, Fibres formelles d’un anneau local noethérien, Ann. Sci. École Norm. Sup. (4) 3 (1970), 295–311 (French). MR 272779
- Marguerite Flexor, Une propriété des anneaux unibranches, Bull. Sci. Math. (2) 96 (1972), 169–175 (French). MR 337933
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021 —, Topics in commutative rings. I (mimeographed notes).
- M. Nagata, Lectures on the fourteenth problem of Hilbert, Tata Institute of Fundamental Research, Bombay, 1965. MR 0215828
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Adrian R. Wadsworth, Pairs of domains where all intermediate domains are Noetherian, Trans. Amer. Math. Soc. 195 (1974), 201–211. MR 349665, DOI 10.1090/S0002-9947-1974-0349665-2
- William Schelter, On the Krull-Akizuki theorem, J. London Math. Soc. (2) 13 (1976), no. 2, 263–264. MR 404329, DOI 10.1112/jlms/s2-13.2.263
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 49-52
- DOI: https://doi.org/10.1090/S0002-9939-1976-0387269-3
- MathSciNet review: 0387269