Banach lattice structures on separable $L_{p}$ spaces
HTML articles powered by AMS MathViewer
- by E. Lacey and P. Wojtaszczyk
- Proc. Amer. Math. Soc. 54 (1976), 83-89
- DOI: https://doi.org/10.1090/S0002-9939-1976-0390743-7
- PDF | Request permission
Abstract:
A complete characterization of those lattice structures on separable ${L_p}$ spaces which are Banach lattice structures under the ${L_p}$ norm is given.References
- Ju. A. Abramovič and P. Wojtaszczyk, On the uniqueness of order in spaces ${l_p}$ and ${L_p}[0,1](1 \leqslant p \leqslant \infty )$ (Russian) (to appear).
L. E. Dor and E. Odell, Monotone bases in ${L_p}$ (to appear).
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279, DOI 10.1007/978-3-642-65762-7 E. Lacey and P. Wojtaszczyk, Non-atomic $M$ spaces can have ${l_1}$ as a dual space (to appear).
- John Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459–466. MR 105017, DOI 10.2140/pjm.1958.8.459
- J. Lindenstrauss and A. Pełczyński, Contributions to the theory of the classical Banach spaces, J. Functional Analysis 8 (1971), 225–249. MR 0291772, DOI 10.1016/0022-1236(71)90011-5
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
- Peter Meyer-Nieberg, Charakterisierung einiger topologischer und ordnungstheoretischer Eigenschaften von Banachverbänden mit Hilfe disjunkter Folgen, Arch. Math. (Basel) 24 (1973), 640–647 (German). MR 341021, DOI 10.1007/BF01228263
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 83-89
- DOI: https://doi.org/10.1090/S0002-9939-1976-0390743-7
- MathSciNet review: 0390743