Another view of the Weierstrass theorem
HTML articles powered by AMS MathViewer
- by Kenneth John Preskenis
- Proc. Amer. Math. Soc. 54 (1976), 109-113
- DOI: https://doi.org/10.1090/S0002-9939-1976-0390779-6
- PDF | Request permission
Abstract:
We present two theorems which conclude that polynomials in $z$ and a given continuous function $f$ are dense in all continuous complex valued functions on the closed unit disk. The first theorem requires that $f$ be differentiable and satisfy $\operatorname {Re} {f_{\overline z }} \geqslant |{f_z}|$ in the open disk and also that ${f^{ - 1}}(f(a))$ be countable for each $a$ in $D$. The second theorem requires that $f$ be a class ${C^1}$-function in a neighborhood of the disk satisfying $|{f_{\overline z }}| > |{f_z}|$ almost everywhere and $\operatorname {Re} {f_{\overline z }} \geqslant |{f_z}|$ everywhere inside the disk.References
- Andrew Browder, Introduction to function algebras, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0246125
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- L. Hörmander and J. Wermer, Uniform approximation on compact sets in $C^{n}$, Math. Scand. 23 (1968), 5–21 (1969). MR 254275, DOI 10.7146/math.scand.a-10893
- S. N. Mergelyan, On the representation of functions by series of polynomials on closed sets, Doklady Akad. Nauk SSSR (N.S.) 78 (1951), 405–408 (Russian). MR 0041929
- Kenneth John Preskenis, Approximation on disks, Trans. Amer. Math. Soc. 171 (1972), 445–467. MR 312123, DOI 10.1090/S0002-9947-1972-0312123-3
- J. Wermer, Approximation on a disk, Math. Ann. 155 (1964), 331–333. MR 165386, DOI 10.1007/BF01354865
- J. Wermer, Polynomially convex disks, Math. Ann. 158 (1965), 6–10. MR 174968, DOI 10.1007/BF01370392
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 109-113
- DOI: https://doi.org/10.1090/S0002-9939-1976-0390779-6
- MathSciNet review: 0390779