Isometry groups of manifolds of negative curvature
HTML articles powered by AMS MathViewer
- by W. Byers
- Proc. Amer. Math. Soc. 54 (1976), 281-285
- DOI: https://doi.org/10.1090/S0002-9939-1976-0390960-6
- PDF | Request permission
Abstract:
Solvable subgroups of the isometry groups of a simply-connected manifold of negative curvature are characterized and this characterization is used to show that the isometry group of the universal Riemannian covering of a compact manifold of negative curvature is either discrete or semisimple.References
- V. I. Arnold and A. Avez, Problèmes ergodiques de la mécanique classique, Monographies Internationales de Mathématiques Modernes, vol. 9, Gauthier-Villars, Éditeur, Paris, 1967 (French). MR 0209436
- R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49. MR 251664, DOI 10.1090/S0002-9947-1969-0251664-4
- P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109. MR 336648
- Detlef Gromoll and Joseph A. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 (1971), 545–552. MR 281122, DOI 10.1090/S0002-9904-1971-12747-7
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Alexandre Preissmann, Quelques propriétés globales des espaces de Riemann, Comment. Math. Helv. 15 (1943), 175–216 (French). MR 10459, DOI 10.1007/BF02565638
- Shing-tung Yau, On the fundamental group of compact manifolds of non-positive curvature, Ann. of Math. (2) 93 (1971), 579–585. MR 283726, DOI 10.2307/1970888
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 281-285
- DOI: https://doi.org/10.1090/S0002-9939-1976-0390960-6
- MathSciNet review: 0390960