The fundamental theorem of algebra on rational $H$-spaces
HTML articles powered by AMS MathViewer
- by Laura Weiss
- Proc. Amer. Math. Soc. 54 (1976), 455-458
- DOI: https://doi.org/10.1090/S0002-9939-1976-0391080-7
- PDF | Request permission
Abstract:
A form of the Fundamental Theorem of Algebra is proven for $\Gamma {\text { - }}H$ structures.References
- M. Arkowitz and C. R. Curjel, Zum Begriff des $H$-Raumes $\textrm {mod}\ {\cal F}$, Arch. Math. (Basel) 16 (1965), 186β190 (German). MR 179789, DOI 10.1007/BF01220019
- Robert F. Brown, Words and polynomials in $H$-spaces, Amer. J. Math. 96 (1974), 229β236. MR 353305, DOI 10.2307/2373629
- P. J. Hilton, An introduction to homotopy theory, Cambridge Tracts in Mathematics and Mathematical Physics, No. 43, Cambridge, at the University Press, 1953. MR 0056289, DOI 10.1017/CBO9780511666278
- Heinz Hopf, Γber die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen, Ann. of Math. (2) 42 (1941), 22β52 (German). MR 4784, DOI 10.2307/1968985
- I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres. I, Proc. London Math. Soc. (3) 4 (1954), 196β218. MR 61838, DOI 10.1112/plms/s3-4.1.196
- Clair E. Miller, The topology of rotation groups, Ann. of Math. (2) 57 (1953), 90β114. MR 52772, DOI 10.2307/1969727
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 455-458
- DOI: https://doi.org/10.1090/S0002-9939-1976-0391080-7
- MathSciNet review: 0391080