Embedding contractible $2$-complexes in $E^{4}$
HTML articles powered by AMS MathViewer
- by Benjamin M. Freed
- Proc. Amer. Math. Soc. 54 (1976), 423-430
- DOI: https://doi.org/10.1090/S0002-9939-1976-0391093-5
- PDF | Request permission
Abstract:
If $L$ is any figure eight complex or any complex of type (1,1,1), then there are infinitely many different embeddings of $L$ in ${E^4}$.References
- R. H. Bing, Necessary and sufficient conditions that a $3$-manifold be $S^{3}$, Ann. of Math. (2) 68 (1958), 17β37. MR 95471, DOI 10.2307/1970041
- L. C. Glaser, Uncountably many contractible open $4$-manifolds, Topology 6 (1967), 37β42. MR 205239, DOI 10.1016/0040-9383(67)90011-0
- John Hempel, A simply connected $3$-manifold is $S^{3}$ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154β158. MR 157365, DOI 10.1090/S0002-9939-1964-0157365-6
- J. P. Neuzil, Embedding the dunce hat in $S^{4}$, Topology 12 (1973), 411β415. MR 362322, DOI 10.1016/0040-9383(73)90032-3
- E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341β358. MR 156351, DOI 10.1016/0040-9383(63)90014-4
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 423-430
- DOI: https://doi.org/10.1090/S0002-9939-1976-0391093-5
- MathSciNet review: 0391093