A GEOMETRIC PROPERTY OF CERTAIN PLANE SETS

KENNETH PIETZ

Abstract. Suppose K is a compact subset of the plane of the form
$\Delta(0,1) \setminus \bigcup_{n=1}^{\infty} \Delta(p_n, r_n)$ where $\Delta(p_n, r_n) \subseteq \Delta(0,1)$ for each n and
$\Delta(p_i, r_i) \cap \Delta(p_j, r_j) = \emptyset$ for $i \neq j$. Let $a = \sup_i ((r_i + 1)/r_i)$ and define the
sets $\partial_* K = \partial \Delta(0,1) \cup \bigcup_{n=1}^{\infty} \partial \Delta(p_n, r_n)$ and $F(K) = \{z \in K \setminus \partial_* K: z$ is
not a point of density of $K\}$. It is proved that if $a < 1$, then $\mathcal{H}^1[F(K)] = 0$, where \mathcal{H}^1
denotes Hausdorff one-dimensional measure.

If p is a point in the complex plane C, we denote the set $\{z \in C: |z - p| < r\}$ by $\Delta(p, r)$. The Lebesgue area and Hausdorff one-dimensional
measure of a measurable plane set X will be denoted by $\mathcal{L}^2(X)$ and $\mathcal{H}^1(X)$, respectively. The notation $X \triangle Y$ will mean $(X \setminus Y) \cup (Y \setminus X)$.

The term “circular set” will mean a compact subset of C of the form
$\Delta(0,1) \setminus \bigcup_{n=1}^{\infty} \Delta(p_n, r_n)$, where $\Delta(p_n, r_n) \subseteq \Delta(0,1)$ for all n and
$\Delta(p_i, r_i) \cap \Delta(p_j, r_j) = \emptyset$ for $i \neq j$. This includes a variety of sets considered in
the studies of rational approximation and analytic capacity [6], [8].

For each circular set $K = \Delta(0,1) \setminus \bigcup_{n=1}^{\infty} \Delta(p_n, r_n)$ with $r_{i+1} < r_i$ for $i \geq 1$, define the type of K to be the number α
$= \sup_i ((r_i + 1)/r_i)$. It is clear that $0 < \alpha < 1$. Furthermore, the set
$\partial_* K = \partial \Delta(0,1) \cup \bigcup_{n=1}^{\infty} \partial \Delta(p_n, r_n)$
(where ∂ denotes topological boundary) is called the outer boundary of K. We
will also use the notation $K_0 = K \setminus \partial_* K$.

If X is any measurable subset of C, a point $p \in C$ will be called a point of
density (respectively, rarefaction) of X if
$$\lim_{r \to 0} \frac{\mathcal{L}^2[\Delta(p, r) \cap X]}{\pi r^2} = 1$$
(respectively, 0).

The purpose of this paper is to prove the following

Theorem. Let K be a circular set of type $\alpha < 1$, and let $F(K) = \{z \in K_0: z$
is not a point of density of $K\}$. Then $\mathcal{H}^1[F(K)] = 0$.

The proof requires some preliminaries.

If μ is any compactly supported, complex, regular Borel measure on C, the

Received by the editors January 10, 1975.

© American Mathematical Society 1976

197
Newtonian potential of μ is defined by

$$U_{|\mu|}(z) = \int \frac{d\mu(\xi)}{|\xi - z|}.$$

It is well known that $U_{|\mu|}$ is finite almost everywhere with respect to area [2]. For each $z \in \mathbb{C}$ such that $U_{|\mu|}(z) < \infty$, the Cauchy transform of μ is defined by

$$\hat{\mu}(z) = \int \frac{d\mu(\xi)}{\xi - z}.$$

The function $\hat{\mu}$ is thus defined ℓ^2 almost everywhere, is analytic off the closed support of μ, and vanishes at infinity.

If f is a complex function with first order partial derivatives, we write

$$K = \Re(K-iK) = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \quad \text{and} \quad K = \Im(K+iK) = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$

where $z = x + iy$.

If μ is a measure as indicated above, it is a consequence of Green's theorem that $\partial \hat{\mu} / \partial \bar{z} = -\pi \mu$ in the sense of distributions. A discussion of this and other properties of the function $\hat{\mu}$ may be found in Chapter 3 of [2].

We have $K = \Delta(0,1) \setminus \bigcup_{n=1}^{\infty} \Delta(p_n, r_n)$. Let μ be the measure on K which equals $dz/2\pi i$ on $\partial \Delta(0,1)$ and $-dz/2\pi i$ on $\partial \Delta(p_n, r_n)$, $n = 1, 2, \cdots$. Then $\hat{\mu} = \chi_K \ell^2$ almost everywhere, where χ_K denotes the characteristic function of K, and $\partial \hat{\mu} / \partial \bar{z} = -\pi \mu$. Since $\hat{\mu}$ is real, it follows that $\partial \hat{\mu} / \partial z$ is also a measure. Thus, grad $\hat{\mu}$ is a vector-valued measure, which means that the set K has finite perimeter in the sense of DeGiorgi [3], [4].

With Federer [5], we say that a unit vector u is an exterior normal of K at z if and only if

$$\lim_{r \to 0} \frac{\ell^2 \left[w : |w - z| < r, (w - z) \cdot u < 0, w \not\in K \right]}{r^2} = 0$$

and

$$\lim_{r \to 0} \frac{\ell^2 \left[w : |w - z| < r, (w - z) \cdot u > 0, w \in K \right]}{r^2} = 0$$

where \cdot denotes inner product. Such a unit vector u, if it exists, is uniquely determined by K and z, and is denoted by $\nu(K,z)$. In case no such u exists, $\nu(K,z)$ is the null vector. This defines, for each $z \in \mathbb{C}$, a vector $\nu(K,z) = \nu_1(K,z) + i\nu_2(K,z)$.

Let $N(K)$ be the subset of \mathbb{C} at which $\nu(K,z) \neq 0$, i.e., the set at which an exterior normal to K exists. Since K has finite perimeter, Federer's theorem [5] implies that

$$\frac{\partial}{\partial x} \chi_K = \frac{\partial \hat{\mu}}{\partial x} = -2\pi \Re \mu = \nu_1(K,z) d\mathcal{H}^1(z)$$

and

$$\frac{\partial}{\partial y} \chi_K = \frac{\partial \hat{\mu}}{\partial y} = -2\pi \Im \mu = \nu_2(K,z) d\mathcal{H}^1(z)$$
in the sense of distributions, where μ is the measure on K defined above. Since μ is supported on ∂K, this implies the following lemma.

Lemma 1. The equality $\mathcal{H}^1[\partial K \triangle N(K)] = 0$ holds.

Following Vol'pert [7], we define the essential boundary of K to be the set of all points in \mathbb{C} which are neither points of density nor points of rarefaction of K. We write $E(K)$ for the essential boundary of K. The following lemma follows from the theorem of Vol'pert in subsection 4 of [7].

Lemma 2. The relation $E(K) \supseteq N(K)$ holds. Furthermore,

$\mathcal{H}^1[E(K) \setminus N(K)] = 0.$

Now let $s > \sqrt{1/(1 - \alpha^2)}$ be fixed but arbitrary. For any $p \in K_0$ and $r > 0$ define

$$L(p,r) = \mathcal{H}^1\left[\Delta(p,r) \cap \bigcup_{n=1}^{n_k} \partial \Delta(p_n, r_n) \right]$$

and

$$A(p,r) = \mathcal{H}^2\left[\Delta(p,r) \cap \bigcup_{n=1}^{n_k} \partial \Delta(p_n, r_n) \right],$$

where in each case the union on the right is taken over those finitely many $\Delta(p_n, r_n)$ such that $r_n > r/2s$.

Lemma 3. There exists a number $\beta > 0$ with the following property. For all $p \in K_0$ and $r > 0$ such that $L(p,r) \leq \beta r$, we have

$$A(p,r) \leq \frac{\pi}{4s^2} \left(s^2 - \frac{1}{1 - \alpha^2} \right) r^2.$$

To prove the lemma, consider a fixed $p \in K_0$ and $r > 0$. Define a function $f: [0,r) \rightarrow [0,\pi r^2]$ by

$$f(t) = f(p,r;t) = \sup \left\{ \mathcal{H}^2\left[\Delta(p,r) \cap \bigcup_{j=1}^{m} \Delta_j \right] : \mathcal{H}^1\left[\Delta(p,r) \cap \bigcup_{j=1}^{m} \partial \Delta_j \right] \leq t \right\},$$

where the supremum is taken over all finite collections of disks $\{\Delta_j\}$ whose closures are pairwise disjoint and do not contain p. It is clear that $f^{-1}(0) = \{0\}$ and that f is nondecreasing and continuous at the origin. We complete the proof of the lemma by letting β be any positive number such that

$$f(\beta r) \leq \frac{\pi}{4s^2} \left(s^2 - \frac{1}{1 - \alpha^2} \right) r^2,$$

and noting that the same β works for all $r < 1$, by homothetic transformation.

Returning to the proof of the main theorem, we choose β as in Lemma 3 and define $S = \{ p \in K_0 : \text{for all sufficiently small } r > 0, L(p,r) \geq \beta r \}$. Since $|\mu|(S) = 0$, it follows from Theorem 3 of [1] that $\mathcal{H}^1(S) = 0.$
Let $T = K_0 \setminus S$ and consider an arbitrary $p \in T$. There exists a sequence $t_k \searrow 0$ such that $L(p, t_k) < \beta t_k$ and hence

$$A(p, t_k) < \frac{\pi}{4s^2} \left(s^2 - \frac{1}{1 - \alpha^2} \right) t_k^2 \quad \text{for } k = 1, 2, \ldots.$$

Let t_k be fixed and consider those $\Delta(p, r_n)$ with $r_n < t_k/2s$ which intersect $A(p, t_k)$. A simple computation, using the fact that K is of type α, shows that $\mathcal{E}^2[\Delta(p, t_k) \setminus K] < \pi t_k^2/4$. It follows that p is not a point of rarefaction of K.

The proof of the theorem is completed by summarizing the above results. Lemma 1 implies that $\mathcal{H}^1[K_0 \cap N(K)] = 0$ whence $\mathcal{H}^1[K_0 \cap E(K)] = 0$ by Lemma 2. However, K_0 is the disjoint union of S and T, with $\mathcal{H}^1(S) = 0$. Since T contains no points of rarefaction, we have therefore

$$\mathcal{H}^1[F(K)] = \mathcal{H}^1[F(K) \cap T] = \mathcal{H}^1[E(K) \cap T] = 0. \quad \text{Q.E.D.}$$

References

4. Ennio DeGiorgi, Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio ad r dimensioni, Ricerche Mat. 4(1955), 95–113. MR17, 596.

Lockheed Electronics Company, Inc., Aerospace Systems Division, Mail Code B-12, Houston, Texas 77058